Previous research reported litchi thaumatin-like protein(LcTLP)could lead to inflammation,which is a factor causing the adverse reactions after excessive intake of litchi.As a main amino acid in litchi pulp,γ-aminobu...Previous research reported litchi thaumatin-like protein(LcTLP)could lead to inflammation,which is a factor causing the adverse reactions after excessive intake of litchi.As a main amino acid in litchi pulp,γ-aminobutyric acid(GABA)was found with anti-inflammatory effect.Therefore,this study aimed to investigate the effects of GABA on LcTLP-induced inflammation through RAW264.7 macrophages and C57BL mice models.In vitro study showed GABA could effectively regulate the level of inflammatory cytokines(interleukin(IL)-1β,IL-6,IL-10,and prostaglandin E2)and Ca2+in cells,and inhibit the phosphorylation of p65,IκB,p38,c-Jun N-terminal kinase(JNK)and extracellular signal-regulated kinase(ERK).These results indicate GABA alleviated inflammation through nuclear factor-κB and mitogen-activated protein kinase pathway signaling pathways.In vivo experiment was performed to verify the anti-inflammatory effect of GABA,and the results demonstrated that GABA reduced the inflammation and oxidative stress in the liver of LcTLP-treated mice,as it down-regulated the pro-inflammatory cytokines,malondialdehyde,aspartate transferase,and alanine transaminase.The relative expression of phosphorylated p38,JNK and ERK in mice liver with GABA treatment were reduced to 65%,39%and 80%of the control group,respectively.Furthermore,GABA treatment enriched probiotic bacteria and decreased pathogenic bacteria in mice gut,which reveals GABA could effectively reduce the translocation of gut microbiota.展开更多
Litchi(Litchi chinensis Sonn.)is a type of commercially prevalent subtropical and tropical fruit.Since litchi has a highly heterozygous genetic background and a long reproductive cycle,conventional breeding methods(su...Litchi(Litchi chinensis Sonn.)is a type of commercially prevalent subtropical and tropical fruit.Since litchi has a highly heterozygous genetic background and a long reproductive cycle,conventional breeding methods(such as hybridization)have limited ability to nurture new litchi cultivars.Here,an efficient and stable Agrobacterium tumefaciens-mediated genetic transformation of embryogenic callus was established in‘Feizixiao’litchi.Transgenic materials were verified using polymerase chain reaction(PCR)analysis,β-glucuronidase(GUS)assay,and green fluorescent protein(GFP)assay.To implement the technology of the Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)/associated protein 9(CRISPR/Cas9)technology in‘Feizixiao’litchi and verify the validity of these transformation systems,the litchi polyphenol oxidase gene(LcPPO,JF926153)was knocked out.Various categories of mutations,covering base insertions,deletions,and substitutions,were found in transgenic materials via sequence analysis.The transformation system achieved high feasibility and efficiency,and the system of CRISPR/Cas9 was successfully employed to edit genes in‘Feizixiao’litchi.This work provides an essential foundation for investigating the functions of genes and accelerating litchi genetic improvement.展开更多
基金supported by China Agriculture Research System of MOF and MARA(CARS-32)the Guangzhou Wanglaoji Lychee Industry Research Project(5100-H220577)+2 种基金the Science and Technology Planning Project of Guangzhou City of China(202103000054)the National Natural Science Foundation of China(32202022)the Dongguan Key R&D Programme(2022120030008).
文摘Previous research reported litchi thaumatin-like protein(LcTLP)could lead to inflammation,which is a factor causing the adverse reactions after excessive intake of litchi.As a main amino acid in litchi pulp,γ-aminobutyric acid(GABA)was found with anti-inflammatory effect.Therefore,this study aimed to investigate the effects of GABA on LcTLP-induced inflammation through RAW264.7 macrophages and C57BL mice models.In vitro study showed GABA could effectively regulate the level of inflammatory cytokines(interleukin(IL)-1β,IL-6,IL-10,and prostaglandin E2)and Ca2+in cells,and inhibit the phosphorylation of p65,IκB,p38,c-Jun N-terminal kinase(JNK)and extracellular signal-regulated kinase(ERK).These results indicate GABA alleviated inflammation through nuclear factor-κB and mitogen-activated protein kinase pathway signaling pathways.In vivo experiment was performed to verify the anti-inflammatory effect of GABA,and the results demonstrated that GABA reduced the inflammation and oxidative stress in the liver of LcTLP-treated mice,as it down-regulated the pro-inflammatory cytokines,malondialdehyde,aspartate transferase,and alanine transaminase.The relative expression of phosphorylated p38,JNK and ERK in mice liver with GABA treatment were reduced to 65%,39%and 80%of the control group,respectively.Furthermore,GABA treatment enriched probiotic bacteria and decreased pathogenic bacteria in mice gut,which reveals GABA could effectively reduce the translocation of gut microbiota.
基金supported by grants from the National Key R&D Program of China(Grant No.2019YFD1000900)the Hainan Province Science and Technology Special Fund(Grant No.ZDYF2022XDNY253)the earmarked fund for CARS(Grant No.CARS-32-01)。
文摘Litchi(Litchi chinensis Sonn.)is a type of commercially prevalent subtropical and tropical fruit.Since litchi has a highly heterozygous genetic background and a long reproductive cycle,conventional breeding methods(such as hybridization)have limited ability to nurture new litchi cultivars.Here,an efficient and stable Agrobacterium tumefaciens-mediated genetic transformation of embryogenic callus was established in‘Feizixiao’litchi.Transgenic materials were verified using polymerase chain reaction(PCR)analysis,β-glucuronidase(GUS)assay,and green fluorescent protein(GFP)assay.To implement the technology of the Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)/associated protein 9(CRISPR/Cas9)technology in‘Feizixiao’litchi and verify the validity of these transformation systems,the litchi polyphenol oxidase gene(LcPPO,JF926153)was knocked out.Various categories of mutations,covering base insertions,deletions,and substitutions,were found in transgenic materials via sequence analysis.The transformation system achieved high feasibility and efficiency,and the system of CRISPR/Cas9 was successfully employed to edit genes in‘Feizixiao’litchi.This work provides an essential foundation for investigating the functions of genes and accelerating litchi genetic improvement.