The electrochemical performance of Ta-doped Li4Ti5O12 in the form of Li4Ti4.95Ta0.05O12 was characterized.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were employed to characterize the structure an...The electrochemical performance of Ta-doped Li4Ti5O12 in the form of Li4Ti4.95Ta0.05O12 was characterized.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were employed to characterize the structure and morphology of Li4Ti4.95Ta0.05O12.Ta-doping does not change the phase composition and particle morphology,while improves remarkably its cycling stability at high charge/discharge rate.Li4Ti4.95Ta0.05O12 exhibits an excellent rate capability with a reversible capacity of 116.1 mA·h/g at 10C and even 91.0 mA·h/g at 30C.The substitution of Ta for Ti site can enhance the electronic conductivity of Li4Ti5O12 via the generation of mixing Ti4+/Ti3+,which indicates that Li4Ti4.95Ta0.05O12 is a promising candidate material for anodes in lithium-ion battery application.展开更多
This is the first time that a novel anode material, spinel Li4Ti5O12 which is well known as a "zero-strain" anode material for lithium storage, has been introduced for sodium-ion battery. The Li4Ti5O12 shows an aver...This is the first time that a novel anode material, spinel Li4Ti5O12 which is well known as a "zero-strain" anode material for lithium storage, has been introduced for sodium-ion battery. The Li4Ti5O12 shows an average Na storage voltage of about 1.0 V and a reversible capacity of about 145 mAh/g, thereby making it a promising anode for sodiumion battery. Ex-situ X-ray diffraction (XRD) is used to investigate the structure change in the Na insertion/deinsertion process. Based on this, a possible Na storage mechanism is proposed.展开更多
Lithium titanate has unique "zero-strain" characteristics, which makes it promising for rapid energy storage lithium-ion capacitors. However, extremely low electronic conductivity and lithium ion diffusion c...Lithium titanate has unique "zero-strain" characteristics, which makes it promising for rapid energy storage lithium-ion capacitors. However, extremely low electronic conductivity and lithium ion diffusion coefficient severely limit its performance at high rate. Herein, we have constructed in situ clusters of porous lithium titanate nanoparticles on self-supporting carbon nanotube film by combining iron oxide hard template method and F127 soft template method. Due to the nano-structured particle size and the penetrating lithium ion transmission channel, a greatly improved lithium ion diffusion coefficient has been achieved, which brings significantly better electrochemical performance than dense lithium titanate. By assembling with a durable graphene foam cathode, a lithium-ion capacitor with an energy density of up to 101.8 Wh kg-1 was realized(at a power density of 436.1 W kg-1). And its capacitance retention reaches 84.8% after 5000 cycles. With such an alluring result, our work presents a novel lithium-ion capacitor system with practical application prospects.展开更多
To study the extraction difficulty of lithium ions from various crystal planes of Li2 TiO3, according to the first principle, four representative crystal surfaces of Li2TiO3(precursor),(-133),(-206),(002) and...To study the extraction difficulty of lithium ions from various crystal planes of Li2 TiO3, according to the first principle, four representative crystal surfaces of Li2TiO3(precursor),(-133),(-206),(002) and(-131), were selected to establish a model and to calculate the surface energy, bond length and population using Materials Studio 5.5(MS 5.5). The results demonstrate that there is no direct relationship between the surface energy and the order of disappearance of the four diffraction peaks when lithium titanate is treated with hydrochloric acid, instead, the difficulty of Li~+ extraction from various crystal faces corresponds to the Li-O bond strength. Lithium ion is easy to remove from(-133) and(-206) due to the relatively weak Li-O bond strength. In contrast, Li+ extraction requires a longer time for(002) and(-131).展开更多
In this paper,two carbon-coated lithium titanate(LTO-C1 and LTO-C2)composites were synthesized using the ball-milling-assisted calcination method with different carbon precursor addition processes.The physical and ele...In this paper,two carbon-coated lithium titanate(LTO-C1 and LTO-C2)composites were synthesized using the ball-milling-assisted calcination method with different carbon precursor addition processes.The physical and electrochemical properties of the as-synthesized negative electrode materials were characterized to investigate the effects of two carbon-coated LTO synthesis processes on the electrochemical performance of LTO.The results show that the LTO-C2 synthesized by using Li2CO3 and TiO2 as the raw materials and sucrose as the carbon source in a one-pot method has less polarization during lithium insertion and extraction,minimal charge transfer impedance value and the best electrochemical performance among all samples.At the current density of 300 mA·h·g^(-1),the LTO-C2 composite delivers a charge capacity of 126.9 mA·h·g^(-1),and the reversible capacity after 300 cycles exceeds 121.3 mA·h·g^(-1) in the voltage range of 1.0–3.0 V.Furthermore,the electrochemical impedance spectra show that LTO-C2 has higher electronic conductivity and lithium diffusion coefficient,which indicates the advantages in electrode kinetics over LTO and LTO-C1.The results clarify the best electrochemical properties of the carbon-coated LTO-C2 composite prepared by the one-pot method.展开更多
Cubic (Zn,Li)TiO3 powders were synthesized through a modified sol-gel route including the Pechini process via a three-step heat treatment.The as-synthesized (Zn,Li)TiO3 could be stable up to 1000 °C.The diele...Cubic (Zn,Li)TiO3 powders were synthesized through a modified sol-gel route including the Pechini process via a three-step heat treatment.The as-synthesized (Zn,Li)TiO3 could be stable up to 1000 °C.The dielectric constant and dielectric loss tangent of all the synthesized (Zn,Li)TiO3 samples at different measurement frequencies showed the similar tendency.At the same frequency,the dielectric constant and the dielectric loss tangent of (Zn,Li)TiO3 samples decreased and increased,respectively,with the lithium doping content increase.The as-prepared (Zn,Li)TiO3 showed improved microwave dielectric properties,and its maximum value of quality factor could reach 34000 GHz.展开更多
A sol-gel method using lauric acid as surfactant was used to synthesize Li4Ti5O12 nanocrystals with an ultra-fine particle size distribution between 120 and 250 nm.In order to obtain the electrode materials with the b...A sol-gel method using lauric acid as surfactant was used to synthesize Li4Ti5O12 nanocrystals with an ultra-fine particle size distribution between 120 and 250 nm.In order to obtain the electrode materials with the best electrochemical performance,the content of lauric acid during Li4Ti5O12 synthesis was systematically studied.The physical and electrochemical properties of the synthesized samples were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),laser particle size analysis,alternating current impedance(AC) and galvanostatic charge-discharge experiments.The highly dispersed Li4Ti5O12 nanocrystals obtained at 800 ℃ for 10 h can deliver a specific capacity of 163.3 mA-h/g at 1C rate without obvious capacity fade up to 50 cycles.The results suggest that well dispersed Li4Ti5O12 nanocrystals shorten the Li-ion diffusion length and enhance the electrochemical kinetics of the samples,which are very crucial to high rate capability.展开更多
The development of fast rechargeable lithium ion batteries(LIBs)is highly dependent on the innovation of advanced high-power electrode materials.In this work,for the first time,we report a sacrificial NiO arrays templ...The development of fast rechargeable lithium ion batteries(LIBs)is highly dependent on the innovation of advanced high-power electrode materials.In this work,for the first time,we report a sacrificial NiO arrays template method for controllable synthesis of self-supported hierarchical porous Li_(4)Ti_(5)O_(12)/C(LTO/C)nanoflakes arrays,for use as fast rechargeable anodes for LIBs.The ultrathin(2-3 nm)carbon layer was uniformly coated on the LTO forming arrays architecture.The hierarchical porous LTO/C nanoflakes consisted of primary cross-linked nanoparticles of 50-100 nm and showed large porosity.Because of the enhanced electrical conductivity and accelerated ion transfer channels,the well-designed binderfree porous LTO/C nanoflakes arrays exhibited notable high-rate lithium ion storage performance with smaller polarization,better electrochemical reactivity,higher specific capacity(157 mAh g^(-1) at the current density of 20C)and improved long-term cycling life(96.2% after 6000 cycles at 20C),superior to the unmodified porous LTO arrays counterpart(126 mAh g^(-1) at 20C and 88.0%after 6000 cycles at 20C).Our work provides a new template for the construction of high-performance high-rate electrodes for electrochemical energy storage.展开更多
W-doped Li4TisO12 in the form of Li4Ti4.95W0.osO12 was firstly synthesized via solid state reaction. X-ray diffraction (XRD) and scanning electron microscope (gEM) were employed to characterize the structure and m...W-doped Li4TisO12 in the form of Li4Ti4.95W0.osO12 was firstly synthesized via solid state reaction. X-ray diffraction (XRD) and scanning electron microscope (gEM) were employed to characterize the structure and morphology of Li4Ti4.psW0.05Ol2. W-doping does not change the phase composition and particle morphology, while remarkably improves its cycling stability at high charge/discharge rate. Li4Ti4.95W0.05O12 exhibits an excellent rate capability with a reversible capacity of 131.2 mA.h/g at 10C and even 118.6 mA.h/g at 20C. The substitution of W for Ti site can enhance the electronic conductivity of Li4TisO12 via the generation of mixing Ti4+/Ti3+, which indicates that Li4Ti4.psW0.05O12 is promising as a high rate anode for the lithium-ion batteries.展开更多
Exploring electrode materials with a high volumetric energy density and high rate capability remains of a great challenge for nanosized-Li_(4)Ti_(5)O_(12)(LTO)batteries.Here,hierarchical porous Ti^(3+)-C-N-Br co-doped...Exploring electrode materials with a high volumetric energy density and high rate capability remains of a great challenge for nanosized-Li_(4)Ti_(5)O_(12)(LTO)batteries.Here,hierarchical porous Ti^(3+)-C-N-Br co-doped LTO(LTOCPB-CC)is synthesized using carboxyl-grafted nanocarbon(CC)and cetylpyridinium bromide(CPB)as combined structure-directing agents.Ti^(4+)-O-CPB/Li^(+)-CC is designed as a new molecular chelate,in which CPB and CC promote the uniform mixing of Li^(+)and Ti^(4+)and control the morphology of TiO_(2) and the final product.The defects(oxygen vacancies and ion dopants)formed during the annealing process increase the electron/hole concentration and reduce the band gap,both of which enhance the n-type electron modification of LTO.As-prepared LTOCPB-CC has a large specific surface area and high tap density,as well as a high electronic conductivity(2.84×10^(-4) S cm^(-1))and ionic conductivity(3.82×10^(-12)cm^(2) s^(-1)),which are responsible for its excellent rate capability(157.7 mA h g^(-1) at 20 C)and stable long-term cycling performance(0.008% fade per cycle after 1000 cycles at 20 C).展开更多
Anode material Li4Ti5O12 was prepared at 800℃ by a solid-state reaction, followed by heat-treatment at 600℃ for different times (0, 2, 8, and 12 h). The effects of heat-treatment time on the particle morphology, r...Anode material Li4Ti5O12 was prepared at 800℃ by a solid-state reaction, followed by heat-treatment at 600℃ for different times (0, 2, 8, and 12 h). The effects of heat-treatment time on the particle morphology, rate-capability, and electrode kinetic process of the Li4Ti5O12 electrode, and on the lithium ion diffusion coefficient inside the Li4Ti5O12 electrode were investigated. Proper heat treatment could smoothen the particle surface of Li4Ti5O12 particles and increase the rate-capability of the electrode. Overlong heat treatment might cause particle aggregation and hence result in a poor electrode kinetic process. A sample with 8 h of heat treatment showed the best rate-capability and the lowest electrode reaction resistance. Heat treatment for 2-8 h does not significantly change the lithium ion diffusion coefficient inside the Li4Ti5O12 electrode, whereas, 12-h treatment results in a lower lithium ion diffusion coefficient.展开更多
Materials with high-power charge–discharge capabilities are of interest to overcome the power limitations of conventional Li-ion batteries.In this study,a unique solvothermal synthesis of Li4Ti5O12 nanoparticles is p...Materials with high-power charge–discharge capabilities are of interest to overcome the power limitations of conventional Li-ion batteries.In this study,a unique solvothermal synthesis of Li4Ti5O12 nanoparticles is proposed by using an off-stoichiometric precursor ratio.A Li-deficient off-stoichiometry leads to the coexistence of phaseseparated crystalline nanoparticles of Li4Ti5O12 and TiO2 exhibiting reasonable high-rate performances.However,after the solvothermal process,an extended aging of the hydrolyzed solution leads to the formation of a Li4Ti5O12 nanoplate-like structure with a self-assembled disordered surface layer without crystalline TiO2.The Li4Ti5O12 nanoplates with the disordered surface layer deliver ultrahighrate performances for both charging and discharging in the range of 50–300C and reversible capacities of 156 and 113 mAh g−1 at these two rates,respectively.Furthermore,the electrode exhibits an ultrahigh-charging-rate capability up to 1200C(60 mAh g−1;discharge limited to 100C).Unlike previously reported high-rate half cells,we demonstrate a high-power Li-ion battery by coupling Li4Ti5O12 with a high-rate LiMn2O4 cathode.The full cell exhibits ultrafast charging/discharging for 140 and 12 s while retaining 97 and 66% of the anode theoretical capacity,respectively.Room-(25℃),low-(−10℃),and high-(55℃)temperature cycling data show the wide temperature operation range of the cell at a high rate of 100C.展开更多
Li_(4)Ti_(5)O_(12)(LTO) anode material demonstrates superior cycling performance due to its stable spinel structure and high lithiation/de-lithiation potential.Herein,a novel energy-saving solid-phase synthesis route ...Li_(4)Ti_(5)O_(12)(LTO) anode material demonstrates superior cycling performance due to its stable spinel structure and high lithiation/de-lithiation potential.Herein,a novel energy-saving solid-phase synthesis route for LTO has been successfully designed,employing the cheap industrial intermediate product of metatitanic acid (HTO) as titanium source.Through the in-situ Fourier transform infrared spectroscopy (FTIR)and ex-situ X-ray diffraction (XRD),it is revealed for the first time that the amorphous crystal structure of HTO is more conducive for the Li+insertion,making it possible to prepare LTO at a relatively lower sintering temperature.Utilizing the dehydration carbonization reaction between glucose and sulfuric acid,an ingenious strategy of glucose pre-coating is adopted to avoid the generation of Li_(2)SO_(4) impurity caused by the residual sulfuric acid on the surface of HTO,which meanwhile enhances the conductivity and inhibits the particle growth of LTO.The obtained ALTO@C anode material consequently exhibits excellent electrochemical performance that 132.0 m Ah g^(-1)is remained even at 20 C,and ultra low decay rate of 0.015% per cycle is achieved during 1000 cycles at 2 C.Remarkably,LiCoO_(2)//ALTO@C full cell delivers conspicuous low-temperature property (130.7 m Ah g^(-1)at 0.5 C and almost no attenuation after 300 cycles under-20℃).展开更多
Nanomaterials with electrochemical activity are always suffering from aggregations, particularly during the high-temperature synthesis processes, which will lead to decreased energy-storage performance. Here, hierarch...Nanomaterials with electrochemical activity are always suffering from aggregations, particularly during the high-temperature synthesis processes, which will lead to decreased energy-storage performance. Here, hierarchically structured lithium titanate/nitrogen-doped porous graphene fiber nanocomposites were synthesized by using confined growth of Li4Ti5O12 (LTO) nanoparticles in nitrogen-doped mesoporous graphene fibers (NPGF). NPGFs with uniform pore structure are used as templates for hosting LTO precursors, followed by high-temperature treatment at 800 ~C under argon (Ar). LTO nanoparticles with size of several nanometers are successfully synthesized in the mesopores of NPGFs, forming nanostructured LTO/NPGF composite fibers. As an anode material for lithium-ion batteries, such nanocomposite architecture offers effective electron and ion transport, and robust structure. Such nanocomposites in the electrodes delivered a high reversible capacity (164 mAh.g-1 at 0.3 C), excellent rate capability (102 mAh-g-1 at 10 C), and long cycling stability.展开更多
The defect engineering shows great potential in boosting the conversion of lithium polysulfides intermediates for high energy density lithium-sulfur batteries(LSBs),yet the catalytic mechanisms remain unclear.Herein,t...The defect engineering shows great potential in boosting the conversion of lithium polysulfides intermediates for high energy density lithium-sulfur batteries(LSBs),yet the catalytic mechanisms remain unclear.Herein,the oxygen-defective Li_(4)Ti_(5)O_(12)-xhollow microspheres uniformly encapsulated by N-doped carbon layer(OD-LTO@NC)is delicately designed as an intrinsically polar inorganic sulfur host for the research on the catalytic mechanism.Theoretical simulations have demonstrated that the existence of oxygen deficiencies enhances the adsorption capability of spinel Li_(4)Ti_(5)O_(12)towards soluble lithium polysulfides.Some-S-S-bonds of the Li2S6on the defective Li_(4)Ti_(5)O_(12)surface are fractured by the strong adsorption force,which allows the inert bridging sulfur atoms to be converted into the susceptible terminal sulfur atoms,and reduces the activation energy of the polysulfide conversion in some degree.In addition,with the N-doped carbon layer,secondary hollow microspheres architecture built with primary ultrathin nanosheets provide a large amount of void space and active sites for sulfur storage,adsorption and conversion.The as-designed sulfur host exhibits a remarkable rate capability of 547 m Ah g^(-1)at 4C(1 C=1675 m A g^(-1))and an outstanding long-term cyclability(519 m Ah g^(-1)after 1000 cycles at 3 C).Besides,a high specific capacity of 832 m Ah g^(-1)is delivered even after 100 cycles under a high sulfur mass loading of 3.2 mg cm^(-2),indicating its superior electrochemical performances.This work not only provides a strong proof for the application of oxygen defect in the adsorption and catalytic conversion of lithium polysulfides,but offers a promising avenue to achieve high performance LSBs with the material design concept of incorporating oxygen-deficient spinel structure with hierarchical hollow frameworks.展开更多
A three-dimensional few-layer reduced graphene oxide-wrapped mesoporous Li4TisO12 (m-LTO@FL- RGO) electrode is produced using a simple solution fabrication process. When tested as an anode for Li- ion batteries, the...A three-dimensional few-layer reduced graphene oxide-wrapped mesoporous Li4TisO12 (m-LTO@FL- RGO) electrode is produced using a simple solution fabrication process. When tested as an anode for Li- ion batteries, the m-LTO@FL-RGO composite exhibits excellent rate capability and superior cycle life. The capacity of m-LTO@FL-RGO reaches 165.4 mA h g 1 after 100 cycles between I and 2.5 V at a rate of 1 C. Even at a rate of 30 C, a high discharge capacity of 115.1 mA h g 1 is still obtained, which is three times higher than the pristine mesoporous Li4TisO12 (m-LTO). The graphene nanosheets are incorporated into the m-LTO microspheres homogenously, which provide a high conductive network for electron transportation.展开更多
The electrical characteristics of hybrid super capacitor were evaluated by synthesizing LTO(Li_(4)Ti_(5)O_(12))using TiO_(2) having a hydrogen titanate nanowire form.Preparation of the hydrogen titanate nanowire was i...The electrical characteristics of hybrid super capacitor were evaluated by synthesizing LTO(Li_(4)Ti_(5)O_(12))using TiO_(2) having a hydrogen titanate nanowire form.Preparation of the hydrogen titanate nanowire was implemented by using TiO_(2) having size of 60 nm and NaOH,and performing synthesis at 70℃for 6 h with a sonochemical method.LTO compound was synthesized at 150℃for 36 h and at 180℃for 36 h respectively by using the hydrogen titanate nanowire and LiOH·H2O as starting materials with a hydrothermal method.The final LTO compound was synthesized at 700℃for 6 h using a solid-state method.As a result of manufacturing the hybrid super capacitor using LTO synthesized at 180℃for 36 h with the hydrothermal method,a capacity of 198 mA·h/g has been achieved compared to a theoretical capacity of 172 mA·h/g of existing LTO,and thus,the capacity has been increased by about 13%.Further,such excellent cycle performance has ensured its possibility as a high-capacity capacitor.展开更多
Spinel lithium titanate(Li_(4)Ti_(5)O_(12),LTO),with the merits of safety operation voltage,stable crystal structure,and minor lattice volume changes,becomes an optimal anode material for high-power Li-ion batteries.H...Spinel lithium titanate(Li_(4)Ti_(5)O_(12),LTO),with the merits of safety operation voltage,stable crystal structure,and minor lattice volume changes,becomes an optimal anode material for high-power Li-ion batteries.However,the inherent wide bandgap and low lithiation reactivity of Li_(4)Ti_(5)O_(12)bring about poor conductivity and lithiation dynamics,limiting its further applications.Herein,we design and prepare unique Li_(4)Ti_(5)O_(12)anode materials with extremely low dopant content of Na^(+)utilizing the amorphous precursors.The resultant Li_(4)Na_(0.008-)Ti_(5)O_(12.004)sample(denoted as NLTO-0.008)presents superior rate performances and cycle ability,with a reversible capacity of 149.4 mAh·g^(-1)at the current rate of10.0C.NLTO-0.008 retains the charge capacity of151.3 mAh·g^(-1)with a capacity loss of 0.5%after 1000cycles at the current rate of 1.0C(charge)/10.0C(discharge).The kinetic studies furtherly demonstrate that the lithiation reaction energy and diffusion energy barrier decrease by 28.8%and 30%,respectively.Crystal structure analysis indicates that Na^(+)occupies the 16d Li site and forms distorted LiO_(4)tetrahedron and TiO_(6)octahedron.This lattice distortion forms open diffusion channels,thus enhancing the Li^(+)diffusion dynamics and decreasing the lithiation reaction energy barrier for Li_(4)Ti_(5)O_(12).Therefore,the pre-sodiation strategy may arouse great interest in understanding and developing intercalation-type transitionmetal-based electrode materials in high-power lithium-ion batteries.展开更多
Li4Ti5O12 was synthesized by a facile gel-combustion method(GCM) with polyvinylpyrrolidone(PVP) as the polymer chelating agent and fuel.The structural and electrochemical properties of the sample were compared wit...Li4Ti5O12 was synthesized by a facile gel-combustion method(GCM) with polyvinylpyrrolidone(PVP) as the polymer chelating agent and fuel.The structural and electrochemical properties of the sample were compared with the one prepared by the conventional solid-state reaction(SSR) through X-ray diffraction(XRD),scanning electron microscopy(SEM),cyclic voltammetry(CV),charge-discharge measurements,and electrochemical impedance spectroscopy(EIS),respectively.The sub-microscale Li4Ti5O12 oxides,with a high phase purity and good stoichiometry,can be obtained by annealing at 800℃.The grain size is smaller than that of the samples that were power prepared by SSR.Lithium-ion batteries with a GCM Li4Ti5O12 anode exhibit excellent reversible capacities of 167.6,160.7,152.9,and 144.2 mAh/g,at the current densities of 0.5 C,1 C,3 C and 5 C,respectively.The excellent cycling and rate performance can be attributed to the smaller particle size,lower charge-transfer resistance and larger lithium ion diffusion coefficient.It is therefore concluded that GCM Li4Ti5O12 is a promising candidate for applications in highrate lithium ion batteries.展开更多
文摘The electrochemical performance of Ta-doped Li4Ti5O12 in the form of Li4Ti4.95Ta0.05O12 was characterized.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were employed to characterize the structure and morphology of Li4Ti4.95Ta0.05O12.Ta-doping does not change the phase composition and particle morphology,while improves remarkably its cycling stability at high charge/discharge rate.Li4Ti4.95Ta0.05O12 exhibits an excellent rate capability with a reversible capacity of 116.1 mA·h/g at 10C and even 91.0 mA·h/g at 30C.The substitution of Ta for Ti site can enhance the electronic conductivity of Li4Ti5O12 via the generation of mixing Ti4+/Ti3+,which indicates that Li4Ti4.95Ta0.05O12 is a promising candidate material for anodes in lithium-ion battery application.
基金supported by the National High Technology Research and Development Program of China (Grant No.2009AA033101)the National Basic Research Program of China (Grant No.2010CB833102)+2 种基金the National Natural Science Foundation of China (Grant No.50972164)the Chinese Academy of Sciences Project (Grant No.KJCX2-YW-W26)the Hundred-Talent Project of the Chinese Academy of Sciences
文摘This is the first time that a novel anode material, spinel Li4Ti5O12 which is well known as a "zero-strain" anode material for lithium storage, has been introduced for sodium-ion battery. The Li4Ti5O12 shows an average Na storage voltage of about 1.0 V and a reversible capacity of about 145 mAh/g, thereby making it a promising anode for sodiumion battery. Ex-situ X-ray diffraction (XRD) is used to investigate the structure change in the Na insertion/deinsertion process. Based on this, a possible Na storage mechanism is proposed.
基金the National Natural Science Foundation of China(51673064,21875065)International Science&Technology Cooperation Program of China(2016YFE0131200)Shanghai Municipality Research Project(15520720500)。
文摘Lithium titanate has unique "zero-strain" characteristics, which makes it promising for rapid energy storage lithium-ion capacitors. However, extremely low electronic conductivity and lithium ion diffusion coefficient severely limit its performance at high rate. Herein, we have constructed in situ clusters of porous lithium titanate nanoparticles on self-supporting carbon nanotube film by combining iron oxide hard template method and F127 soft template method. Due to the nano-structured particle size and the penetrating lithium ion transmission channel, a greatly improved lithium ion diffusion coefficient has been achieved, which brings significantly better electrochemical performance than dense lithium titanate. By assembling with a durable graphene foam cathode, a lithium-ion capacitor with an energy density of up to 101.8 Wh kg-1 was realized(at a power density of 436.1 W kg-1). And its capacitance retention reaches 84.8% after 5000 cycles. With such an alluring result, our work presents a novel lithium-ion capacitor system with practical application prospects.
基金Funded partly by the Key Project of Natural Science of Sichuan Provincial Education Department(No.16ZA0309)the Doctoral Research Start-up Funding(No.15B16)
文摘To study the extraction difficulty of lithium ions from various crystal planes of Li2 TiO3, according to the first principle, four representative crystal surfaces of Li2TiO3(precursor),(-133),(-206),(002) and(-131), were selected to establish a model and to calculate the surface energy, bond length and population using Materials Studio 5.5(MS 5.5). The results demonstrate that there is no direct relationship between the surface energy and the order of disappearance of the four diffraction peaks when lithium titanate is treated with hydrochloric acid, instead, the difficulty of Li~+ extraction from various crystal faces corresponds to the Li-O bond strength. Lithium ion is easy to remove from(-133) and(-206) due to the relatively weak Li-O bond strength. In contrast, Li+ extraction requires a longer time for(002) and(-131).
文摘In this paper,two carbon-coated lithium titanate(LTO-C1 and LTO-C2)composites were synthesized using the ball-milling-assisted calcination method with different carbon precursor addition processes.The physical and electrochemical properties of the as-synthesized negative electrode materials were characterized to investigate the effects of two carbon-coated LTO synthesis processes on the electrochemical performance of LTO.The results show that the LTO-C2 synthesized by using Li2CO3 and TiO2 as the raw materials and sucrose as the carbon source in a one-pot method has less polarization during lithium insertion and extraction,minimal charge transfer impedance value and the best electrochemical performance among all samples.At the current density of 300 mA·h·g^(-1),the LTO-C2 composite delivers a charge capacity of 126.9 mA·h·g^(-1),and the reversible capacity after 300 cycles exceeds 121.3 mA·h·g^(-1) in the voltage range of 1.0–3.0 V.Furthermore,the electrochemical impedance spectra show that LTO-C2 has higher electronic conductivity and lithium diffusion coefficient,which indicates the advantages in electrode kinetics over LTO and LTO-C1.The results clarify the best electrochemical properties of the carbon-coated LTO-C2 composite prepared by the one-pot method.
基金Supported by the National Natural Science Foundation of China(Nos.20731001,20871015 and 50725415)the Program for New Century Excellent Talents in University,China(NCET)+1 种基金the National Basic Research Program of China(No.2007CB613601)the Program for Changjiang Scholars and Innovative Research Team in University,China(No.IRT0708)
文摘Cubic (Zn,Li)TiO3 powders were synthesized through a modified sol-gel route including the Pechini process via a three-step heat treatment.The as-synthesized (Zn,Li)TiO3 could be stable up to 1000 °C.The dielectric constant and dielectric loss tangent of all the synthesized (Zn,Li)TiO3 samples at different measurement frequencies showed the similar tendency.At the same frequency,the dielectric constant and the dielectric loss tangent of (Zn,Li)TiO3 samples decreased and increased,respectively,with the lithium doping content increase.The as-prepared (Zn,Li)TiO3 showed improved microwave dielectric properties,and its maximum value of quality factor could reach 34000 GHz.
基金Project(2007CB2097050)supported by the National Basic Research Program of ChinaProject(20803035)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘A sol-gel method using lauric acid as surfactant was used to synthesize Li4Ti5O12 nanocrystals with an ultra-fine particle size distribution between 120 and 250 nm.In order to obtain the electrode materials with the best electrochemical performance,the content of lauric acid during Li4Ti5O12 synthesis was systematically studied.The physical and electrochemical properties of the synthesized samples were characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),laser particle size analysis,alternating current impedance(AC) and galvanostatic charge-discharge experiments.The highly dispersed Li4Ti5O12 nanocrystals obtained at 800 ℃ for 10 h can deliver a specific capacity of 163.3 mA-h/g at 1C rate without obvious capacity fade up to 50 cycles.The results suggest that well dispersed Li4Ti5O12 nanocrystals shorten the Li-ion diffusion length and enhance the electrochemical kinetics of the samples,which are very crucial to high rate capability.
基金supported by the National Natural Science Foundation of China(Grant No.51772272)Natural Science Funds for Distinguished Young Scholar of Zhejiang Province(Grant No.LR20E020001)+1 种基金Startup Foundation for Hundred-Talent Program of Zhejiang UniversityPearl River S&T Nova Program of Guangzhou(Grant No.201710010143)。
文摘The development of fast rechargeable lithium ion batteries(LIBs)is highly dependent on the innovation of advanced high-power electrode materials.In this work,for the first time,we report a sacrificial NiO arrays template method for controllable synthesis of self-supported hierarchical porous Li_(4)Ti_(5)O_(12)/C(LTO/C)nanoflakes arrays,for use as fast rechargeable anodes for LIBs.The ultrathin(2-3 nm)carbon layer was uniformly coated on the LTO forming arrays architecture.The hierarchical porous LTO/C nanoflakes consisted of primary cross-linked nanoparticles of 50-100 nm and showed large porosity.Because of the enhanced electrical conductivity and accelerated ion transfer channels,the well-designed binderfree porous LTO/C nanoflakes arrays exhibited notable high-rate lithium ion storage performance with smaller polarization,better electrochemical reactivity,higher specific capacity(157 mAh g^(-1) at the current density of 20C)and improved long-term cycling life(96.2% after 6000 cycles at 20C),superior to the unmodified porous LTO arrays counterpart(126 mAh g^(-1) at 20C and 88.0%after 6000 cycles at 20C).Our work provides a new template for the construction of high-performance high-rate electrodes for electrochemical energy storage.
文摘W-doped Li4TisO12 in the form of Li4Ti4.95W0.osO12 was firstly synthesized via solid state reaction. X-ray diffraction (XRD) and scanning electron microscope (gEM) were employed to characterize the structure and morphology of Li4Ti4.psW0.05Ol2. W-doping does not change the phase composition and particle morphology, while remarkably improves its cycling stability at high charge/discharge rate. Li4Ti4.95W0.05O12 exhibits an excellent rate capability with a reversible capacity of 131.2 mA.h/g at 10C and even 118.6 mA.h/g at 20C. The substitution of W for Ti site can enhance the electronic conductivity of Li4TisO12 via the generation of mixing Ti4+/Ti3+, which indicates that Li4Ti4.psW0.05O12 is promising as a high rate anode for the lithium-ion batteries.
基金financially supported by the High-level Innovative Talents Training Project of Guizhou Province(QKHPTRC[2016]5658)the Guizhou Province Graduate Research Fund(YJSCXJH[2018]050)the Guizhou Province Graduate Research Fund(YJSCXJH[2018]081)。
文摘Exploring electrode materials with a high volumetric energy density and high rate capability remains of a great challenge for nanosized-Li_(4)Ti_(5)O_(12)(LTO)batteries.Here,hierarchical porous Ti^(3+)-C-N-Br co-doped LTO(LTOCPB-CC)is synthesized using carboxyl-grafted nanocarbon(CC)and cetylpyridinium bromide(CPB)as combined structure-directing agents.Ti^(4+)-O-CPB/Li^(+)-CC is designed as a new molecular chelate,in which CPB and CC promote the uniform mixing of Li^(+)and Ti^(4+)and control the morphology of TiO_(2) and the final product.The defects(oxygen vacancies and ion dopants)formed during the annealing process increase the electron/hole concentration and reduce the band gap,both of which enhance the n-type electron modification of LTO.As-prepared LTOCPB-CC has a large specific surface area and high tap density,as well as a high electronic conductivity(2.84×10^(-4) S cm^(-1))and ionic conductivity(3.82×10^(-12)cm^(2) s^(-1)),which are responsible for its excellent rate capability(157.7 mA h g^(-1) at 20 C)and stable long-term cycling performance(0.008% fade per cycle after 1000 cycles at 20 C).
基金This study was financially supported by the National Natural Science Foundation of China (No.50371007).
文摘Anode material Li4Ti5O12 was prepared at 800℃ by a solid-state reaction, followed by heat-treatment at 600℃ for different times (0, 2, 8, and 12 h). The effects of heat-treatment time on the particle morphology, rate-capability, and electrode kinetic process of the Li4Ti5O12 electrode, and on the lithium ion diffusion coefficient inside the Li4Ti5O12 electrode were investigated. Proper heat treatment could smoothen the particle surface of Li4Ti5O12 particles and increase the rate-capability of the electrode. Overlong heat treatment might cause particle aggregation and hence result in a poor electrode kinetic process. A sample with 8 h of heat treatment showed the best rate-capability and the lowest electrode reaction resistance. Heat treatment for 2-8 h does not significantly change the lithium ion diffusion coefficient inside the Li4Ti5O12 electrode, whereas, 12-h treatment results in a lower lithium ion diffusion coefficient.
基金Science and Engineering Research Board,India,for the Ramanujan Fellowship(Ref:SB/S2/RJN-100/2014)Department of Science and Technology,India,for the financial support(Ref:DST/TMD/MES/2k17/11)BG acknowledges Amrita Vishwa Vidyapeetham for the fellowship
文摘Materials with high-power charge–discharge capabilities are of interest to overcome the power limitations of conventional Li-ion batteries.In this study,a unique solvothermal synthesis of Li4Ti5O12 nanoparticles is proposed by using an off-stoichiometric precursor ratio.A Li-deficient off-stoichiometry leads to the coexistence of phaseseparated crystalline nanoparticles of Li4Ti5O12 and TiO2 exhibiting reasonable high-rate performances.However,after the solvothermal process,an extended aging of the hydrolyzed solution leads to the formation of a Li4Ti5O12 nanoplate-like structure with a self-assembled disordered surface layer without crystalline TiO2.The Li4Ti5O12 nanoplates with the disordered surface layer deliver ultrahighrate performances for both charging and discharging in the range of 50–300C and reversible capacities of 156 and 113 mAh g−1 at these two rates,respectively.Furthermore,the electrode exhibits an ultrahigh-charging-rate capability up to 1200C(60 mAh g−1;discharge limited to 100C).Unlike previously reported high-rate half cells,we demonstrate a high-power Li-ion battery by coupling Li4Ti5O12 with a high-rate LiMn2O4 cathode.The full cell exhibits ultrafast charging/discharging for 140 and 12 s while retaining 97 and 66% of the anode theoretical capacity,respectively.Room-(25℃),low-(−10℃),and high-(55℃)temperature cycling data show the wide temperature operation range of the cell at a high rate of 100C.
基金financial support from the Major Science and Technology Projects of Sichuan Province(2019KJT0078)the National Natural Science Foundation of China(51904193)the Fundamental Research Funds for the Central Universities。
文摘Li_(4)Ti_(5)O_(12)(LTO) anode material demonstrates superior cycling performance due to its stable spinel structure and high lithiation/de-lithiation potential.Herein,a novel energy-saving solid-phase synthesis route for LTO has been successfully designed,employing the cheap industrial intermediate product of metatitanic acid (HTO) as titanium source.Through the in-situ Fourier transform infrared spectroscopy (FTIR)and ex-situ X-ray diffraction (XRD),it is revealed for the first time that the amorphous crystal structure of HTO is more conducive for the Li+insertion,making it possible to prepare LTO at a relatively lower sintering temperature.Utilizing the dehydration carbonization reaction between glucose and sulfuric acid,an ingenious strategy of glucose pre-coating is adopted to avoid the generation of Li_(2)SO_(4) impurity caused by the residual sulfuric acid on the surface of HTO,which meanwhile enhances the conductivity and inhibits the particle growth of LTO.The obtained ALTO@C anode material consequently exhibits excellent electrochemical performance that 132.0 m Ah g^(-1)is remained even at 20 C,and ultra low decay rate of 0.015% per cycle is achieved during 1000 cycles at 2 C.Remarkably,LiCoO_(2)//ALTO@C full cell delivers conspicuous low-temperature property (130.7 m Ah g^(-1)at 0.5 C and almost no attenuation after 300 cycles under-20℃).
基金This work was supported by National Natural Science Foundation of China (Nos. 21306102 and 21422604), and partially supported by Science Foundation of China University of Petroleum, Beijing (No. 2462013YJRC028).
文摘Nanomaterials with electrochemical activity are always suffering from aggregations, particularly during the high-temperature synthesis processes, which will lead to decreased energy-storage performance. Here, hierarchically structured lithium titanate/nitrogen-doped porous graphene fiber nanocomposites were synthesized by using confined growth of Li4Ti5O12 (LTO) nanoparticles in nitrogen-doped mesoporous graphene fibers (NPGF). NPGFs with uniform pore structure are used as templates for hosting LTO precursors, followed by high-temperature treatment at 800 ~C under argon (Ar). LTO nanoparticles with size of several nanometers are successfully synthesized in the mesopores of NPGFs, forming nanostructured LTO/NPGF composite fibers. As an anode material for lithium-ion batteries, such nanocomposite architecture offers effective electron and ion transport, and robust structure. Such nanocomposites in the electrodes delivered a high reversible capacity (164 mAh.g-1 at 0.3 C), excellent rate capability (102 mAh-g-1 at 10 C), and long cycling stability.
基金supported by the National Natural Science Foundation of China(21805157,51972187)Natural Science Foundation of Shandong Province(ZR2019MEM043,ZR2019MB037)+1 种基金Shandong Provincial Key Research and Development Program(2019GGX103034)Development Program in Science and Technology of Qingdao(19-6-2-12-cg)。
文摘The defect engineering shows great potential in boosting the conversion of lithium polysulfides intermediates for high energy density lithium-sulfur batteries(LSBs),yet the catalytic mechanisms remain unclear.Herein,the oxygen-defective Li_(4)Ti_(5)O_(12)-xhollow microspheres uniformly encapsulated by N-doped carbon layer(OD-LTO@NC)is delicately designed as an intrinsically polar inorganic sulfur host for the research on the catalytic mechanism.Theoretical simulations have demonstrated that the existence of oxygen deficiencies enhances the adsorption capability of spinel Li_(4)Ti_(5)O_(12)towards soluble lithium polysulfides.Some-S-S-bonds of the Li2S6on the defective Li_(4)Ti_(5)O_(12)surface are fractured by the strong adsorption force,which allows the inert bridging sulfur atoms to be converted into the susceptible terminal sulfur atoms,and reduces the activation energy of the polysulfide conversion in some degree.In addition,with the N-doped carbon layer,secondary hollow microspheres architecture built with primary ultrathin nanosheets provide a large amount of void space and active sites for sulfur storage,adsorption and conversion.The as-designed sulfur host exhibits a remarkable rate capability of 547 m Ah g^(-1)at 4C(1 C=1675 m A g^(-1))and an outstanding long-term cyclability(519 m Ah g^(-1)after 1000 cycles at 3 C).Besides,a high specific capacity of 832 m Ah g^(-1)is delivered even after 100 cycles under a high sulfur mass loading of 3.2 mg cm^(-2),indicating its superior electrochemical performances.This work not only provides a strong proof for the application of oxygen defect in the adsorption and catalytic conversion of lithium polysulfides,but offers a promising avenue to achieve high performance LSBs with the material design concept of incorporating oxygen-deficient spinel structure with hierarchical hollow frameworks.
基金financially supported by Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, No. IRT1161)Program of Science and Technology Innovation Team in Bingtuan (No. 2011CC001)the National Natural Science Foundation of China (Nos. 21263021, U1303291)
文摘A three-dimensional few-layer reduced graphene oxide-wrapped mesoporous Li4TisO12 (m-LTO@FL- RGO) electrode is produced using a simple solution fabrication process. When tested as an anode for Li- ion batteries, the m-LTO@FL-RGO composite exhibits excellent rate capability and superior cycle life. The capacity of m-LTO@FL-RGO reaches 165.4 mA h g 1 after 100 cycles between I and 2.5 V at a rate of 1 C. Even at a rate of 30 C, a high discharge capacity of 115.1 mA h g 1 is still obtained, which is three times higher than the pristine mesoporous Li4TisO12 (m-LTO). The graphene nanosheets are incorporated into the m-LTO microspheres homogenously, which provide a high conductive network for electron transportation.
文摘The electrical characteristics of hybrid super capacitor were evaluated by synthesizing LTO(Li_(4)Ti_(5)O_(12))using TiO_(2) having a hydrogen titanate nanowire form.Preparation of the hydrogen titanate nanowire was implemented by using TiO_(2) having size of 60 nm and NaOH,and performing synthesis at 70℃for 6 h with a sonochemical method.LTO compound was synthesized at 150℃for 36 h and at 180℃for 36 h respectively by using the hydrogen titanate nanowire and LiOH·H2O as starting materials with a hydrothermal method.The final LTO compound was synthesized at 700℃for 6 h using a solid-state method.As a result of manufacturing the hybrid super capacitor using LTO synthesized at 180℃for 36 h with the hydrothermal method,a capacity of 198 mA·h/g has been achieved compared to a theoretical capacity of 172 mA·h/g of existing LTO,and thus,the capacity has been increased by about 13%.Further,such excellent cycle performance has ensured its possibility as a high-capacity capacitor.
基金financially supported by the National Natural Science Foundation of China(No.52002116)the Key Science and Technology Program of Henan Province(No.192102210004)。
文摘Spinel lithium titanate(Li_(4)Ti_(5)O_(12),LTO),with the merits of safety operation voltage,stable crystal structure,and minor lattice volume changes,becomes an optimal anode material for high-power Li-ion batteries.However,the inherent wide bandgap and low lithiation reactivity of Li_(4)Ti_(5)O_(12)bring about poor conductivity and lithiation dynamics,limiting its further applications.Herein,we design and prepare unique Li_(4)Ti_(5)O_(12)anode materials with extremely low dopant content of Na^(+)utilizing the amorphous precursors.The resultant Li_(4)Na_(0.008-)Ti_(5)O_(12.004)sample(denoted as NLTO-0.008)presents superior rate performances and cycle ability,with a reversible capacity of 149.4 mAh·g^(-1)at the current rate of10.0C.NLTO-0.008 retains the charge capacity of151.3 mAh·g^(-1)with a capacity loss of 0.5%after 1000cycles at the current rate of 1.0C(charge)/10.0C(discharge).The kinetic studies furtherly demonstrate that the lithiation reaction energy and diffusion energy barrier decrease by 28.8%and 30%,respectively.Crystal structure analysis indicates that Na^(+)occupies the 16d Li site and forms distorted LiO_(4)tetrahedron and TiO_(6)octahedron.This lattice distortion forms open diffusion channels,thus enhancing the Li^(+)diffusion dynamics and decreasing the lithiation reaction energy barrier for Li_(4)Ti_(5)O_(12).Therefore,the pre-sodiation strategy may arouse great interest in understanding and developing intercalation-type transitionmetal-based electrode materials in high-power lithium-ion batteries.
基金supported by the National Natural Science Foundation of China(No.51374056)the support program for hundreds of outstanding innovative talents in Higher Education Institutions of Hebei Province(Ⅱ)(No.BR2-127)+2 种基金Natural Science Foundation of Hebei Province(No.E2013501135)program for New Century Excellent Talents in University(No.NCET-10-0304)The Special Fund for Basic Scientific Research of Central Colleges, Northeastern University(Nos.N100123003 and N120523001)
文摘Li4Ti5O12 was synthesized by a facile gel-combustion method(GCM) with polyvinylpyrrolidone(PVP) as the polymer chelating agent and fuel.The structural and electrochemical properties of the sample were compared with the one prepared by the conventional solid-state reaction(SSR) through X-ray diffraction(XRD),scanning electron microscopy(SEM),cyclic voltammetry(CV),charge-discharge measurements,and electrochemical impedance spectroscopy(EIS),respectively.The sub-microscale Li4Ti5O12 oxides,with a high phase purity and good stoichiometry,can be obtained by annealing at 800℃.The grain size is smaller than that of the samples that were power prepared by SSR.Lithium-ion batteries with a GCM Li4Ti5O12 anode exhibit excellent reversible capacities of 167.6,160.7,152.9,and 144.2 mAh/g,at the current densities of 0.5 C,1 C,3 C and 5 C,respectively.The excellent cycling and rate performance can be attributed to the smaller particle size,lower charge-transfer resistance and larger lithium ion diffusion coefficient.It is therefore concluded that GCM Li4Ti5O12 is a promising candidate for applications in highrate lithium ion batteries.