Lithium (Li) metal attributes to the promising anode but endures the low Columbic efficiency (CE) and safety issues from the inactive Li accumulation. The metallic Li which is isolated from the lithium anode (named de...Lithium (Li) metal attributes to the promising anode but endures the low Columbic efficiency (CE) and safety issues from the inactive Li accumulation. The metallic Li which is isolated from the lithium anode (named dead Li^(0)) consists the major component of the inactive Li. We systematically and meticulously investigated the formation and evaluation of dead Li^(0) during stripping process from electron transfer, the oxidation of Li^(0) to Li^(+) and the diffusion of Li^(+) through solid electrolyte interphase (SEI). The above-mentioned processes were regulated by adjusting the contact sites of electron channels, the dynamic rate of conversion from Li^(0) to Li^(+), and the structure as well as components of SEI. The design principles for achieving less dead Li^(0) and higher CE are proposed as a proof of concept in lithium metal batteries. This new insight sheds a comprehensive light on dead Li^(0) formation and guides the next-generation safe batteries for future application.展开更多
A quantitative relationship between safety issues and dendritic lithium(Li) has been rarely investigated yet. Herein the thermal stability of Li deposits with distinct surface area against non-aqueous electrolyte in p...A quantitative relationship between safety issues and dendritic lithium(Li) has been rarely investigated yet. Herein the thermal stability of Li deposits with distinct surface area against non-aqueous electrolyte in pouch-type Li metal batteries is probed. The thermal runaway temperatures of Li metal batteries obtained by accelerating rate calorimeter are reduced from 211 ℃ for Li foil to 111 ℃ for cycled Li.The initial exothermic temperature is reduced from 194 ℃ for routine Li foil to 142 ℃ for 49.5 m~2g^(-1) dendrite. Li with different specific surface areas can regulate the reaction routes during the temperature range from 50 to 300 ℃. The mass percent of Li foil and highly dendritic Li reacting with ethylene carbonate is higher than that of moderately dendritic Li. This contribution can strengthen the understanding of the thermal runaway mechanism and shed fresh light on the rational design of safe Li metal batteries.展开更多
Lithium(Li)dendrite issue,which is usually caused by inhomogeneous Li nucleation and fragile solid electrolyte interphase(SEI),impedes the further development of high-energy Li metal batteries.However,the integrated c...Lithium(Li)dendrite issue,which is usually caused by inhomogeneous Li nucleation and fragile solid electrolyte interphase(SEI),impedes the further development of high-energy Li metal batteries.However,the integrated construction of a high-stable SEI layer that can regulate uniform nucleation and facilitate fast Li-ion diffusion kinetics for Li metal anode still falls short.Herein,we designed an artificial SEI with hybrid ionic/electronic interphase to regulate Li deposition by in-situ constructing metal Co clusters embedded in LiF matrix.The generated Co and LiF both enable fast Li-ion diffusion kinetics,meanwhile,the lithiophilic properties of Co clusters can serve as Li-ion nucleation sites,thereby contributing to uniform Li nucleation and non-dendritic growth.As a result,a dendrite-free Li deposition with a low overpotential(16.1 mV)is achieved,which enables an extended lifespan over 750 h under strict conditions.The full cells with high-mass-loading LiFePO_(4)(11.5 mg/cm^(2))as cathodes exhibit a remarkable rate capacity of 84.1 mAh/g at 5 C and an improved cycling performance with a capacity retention of 96.4%after undergoing 180 cycles.展开更多
The volume of the metallic lithium anode in allsolid-state Li metal batteries increases significantly due to the lithium dendrite formation during the battery cycling,and the rough surface of lithium metal also reduce...The volume of the metallic lithium anode in allsolid-state Li metal batteries increases significantly due to the lithium dendrite formation during the battery cycling,and the rough surface of lithium metal also reduces Li-ion transport in Li/electrolyte interface.In this work,we developed a solid polymer composite by adding the lowcost Si_(3)N_(4)particles to protect the lithium anode in allsolid-state batteries.The Fourier transform infrared spectroscopy(FTIR)data show that the surface of 10 wt%Si_(3)N_(4)particles interacts with the polyethylene oxide(PEO)and lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)salt;the interaction restricts the anion mobility and improves the ionic conductivity(1×10^(-4)S·cm^(-1))and lithium-ion transference number(0.28)of the composite electrolyte.The lithium metal anode is well protected by the composite electrolyte in all-solid-state cells,including symmetric and Li/LiFePO_(4)cells.The lithium dendrite growth suppression by this composite electrolyte indicates the possible application of these low-cost composite electrolytes for lithium metal protection.展开更多
基金This work was supported by the Beijing Municipal Natural Science Foundation(Z20J00043)the National Natural Science Foundation of China(21825501)+1 种基金the National Key Research and Development Program(2016YFA0202500)the Tsinghua University Initiative Scientific Research Program.
文摘Lithium (Li) metal attributes to the promising anode but endures the low Columbic efficiency (CE) and safety issues from the inactive Li accumulation. The metallic Li which is isolated from the lithium anode (named dead Li^(0)) consists the major component of the inactive Li. We systematically and meticulously investigated the formation and evaluation of dead Li^(0) during stripping process from electron transfer, the oxidation of Li^(0) to Li^(+) and the diffusion of Li^(+) through solid electrolyte interphase (SEI). The above-mentioned processes were regulated by adjusting the contact sites of electron channels, the dynamic rate of conversion from Li^(0) to Li^(+), and the structure as well as components of SEI. The design principles for achieving less dead Li^(0) and higher CE are proposed as a proof of concept in lithium metal batteries. This new insight sheds a comprehensive light on dead Li^(0) formation and guides the next-generation safe batteries for future application.
基金supported by the National Key Research and Development Program(2021YFB2500300)the National Natural Science Foundation of China(22179070,22109084,22075029,and U1932220)+1 种基金the China Postdoctoral Science Foundation(2021TQ0161 and 2021M691709)the Beijing Natural Science Foundation(JQ20004)。
文摘A quantitative relationship between safety issues and dendritic lithium(Li) has been rarely investigated yet. Herein the thermal stability of Li deposits with distinct surface area against non-aqueous electrolyte in pouch-type Li metal batteries is probed. The thermal runaway temperatures of Li metal batteries obtained by accelerating rate calorimeter are reduced from 211 ℃ for Li foil to 111 ℃ for cycled Li.The initial exothermic temperature is reduced from 194 ℃ for routine Li foil to 142 ℃ for 49.5 m~2g^(-1) dendrite. Li with different specific surface areas can regulate the reaction routes during the temperature range from 50 to 300 ℃. The mass percent of Li foil and highly dendritic Li reacting with ethylene carbonate is higher than that of moderately dendritic Li. This contribution can strengthen the understanding of the thermal runaway mechanism and shed fresh light on the rational design of safe Li metal batteries.
基金financially supported by the National Natural Science Foundation of China(Nos.22279097,52172217)Natural Science Foundation of Guangdong Province(No.2021A1515010144)Shenzhen Science and Technology Program(No.JCYJ20210324120400002).
文摘Lithium(Li)dendrite issue,which is usually caused by inhomogeneous Li nucleation and fragile solid electrolyte interphase(SEI),impedes the further development of high-energy Li metal batteries.However,the integrated construction of a high-stable SEI layer that can regulate uniform nucleation and facilitate fast Li-ion diffusion kinetics for Li metal anode still falls short.Herein,we designed an artificial SEI with hybrid ionic/electronic interphase to regulate Li deposition by in-situ constructing metal Co clusters embedded in LiF matrix.The generated Co and LiF both enable fast Li-ion diffusion kinetics,meanwhile,the lithiophilic properties of Co clusters can serve as Li-ion nucleation sites,thereby contributing to uniform Li nucleation and non-dendritic growth.As a result,a dendrite-free Li deposition with a low overpotential(16.1 mV)is achieved,which enables an extended lifespan over 750 h under strict conditions.The full cells with high-mass-loading LiFePO_(4)(11.5 mg/cm^(2))as cathodes exhibit a remarkable rate capacity of 84.1 mAh/g at 5 C and an improved cycling performance with a capacity retention of 96.4%after undergoing 180 cycles.
基金the Shandong Province Key Research and Development Plan(No.2019GGX102016)。
文摘The volume of the metallic lithium anode in allsolid-state Li metal batteries increases significantly due to the lithium dendrite formation during the battery cycling,and the rough surface of lithium metal also reduces Li-ion transport in Li/electrolyte interface.In this work,we developed a solid polymer composite by adding the lowcost Si_(3)N_(4)particles to protect the lithium anode in allsolid-state batteries.The Fourier transform infrared spectroscopy(FTIR)data show that the surface of 10 wt%Si_(3)N_(4)particles interacts with the polyethylene oxide(PEO)and lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)salt;the interaction restricts the anion mobility and improves the ionic conductivity(1×10^(-4)S·cm^(-1))and lithium-ion transference number(0.28)of the composite electrolyte.The lithium metal anode is well protected by the composite electrolyte in all-solid-state cells,including symmetric and Li/LiFePO_(4)cells.The lithium dendrite growth suppression by this composite electrolyte indicates the possible application of these low-cost composite electrolytes for lithium metal protection.