Self-reinforced lithium disilicate(Li_(2)Si_(2)O_(5),LD)glass-ceramics were hot pressing sintered by introducing 5 wt%Li_(2)Si_(2)O_(5)crystal seeds into two different glass compositions of SiO_(2)-Li_(2)O-P2O_(5)-ZrO...Self-reinforced lithium disilicate(Li_(2)Si_(2)O_(5),LD)glass-ceramics were hot pressing sintered by introducing 5 wt%Li_(2)Si_(2)O_(5)crystal seeds into two different glass compositions of SiO_(2)-Li_(2)O-P2O_(5)-ZrO_(2)-Al_(2)O_(3)-K_(2)O-La_(2)O_(3)(7C LD)and SiO_(2)-Li_(2)O-K_(2)O-La_(2)O_(3)(4C LD).The results show that the seeds play an important role in the crystallization inducement,and microstructural and property improvement of the glass,especially for the glass powder without the nucleating agent of P_(2)O_(5).The microstructure features a wider bimodal grain size distribution with large rod-like crystals epitaxially grown along the seeds and small crystals nucleated from the glass powder itself,contributing to the improvement of the performance especially the fracture toughness.The specimen of 4C LD glass with the addition of 5 wt%Li_(2)Si_(2)O_(5) seeds exhibited the best comprehensive properties with a good flexural strength(396±7 MPa),improved fracture toughness(3.31±0.19 MPa·m^(1/2)),and comparable translucency as IPS e.max.This research provides a new idea and method for the improvement of the fracture toughness of lithium disilicate glass-ceramics without affecting its aesthetic appearance,and lays the foundation for its clinical applications.展开更多
The presence of Li_(2)Si_(2)O_(5) and LiAlSi_(4)O_(10) could effectively improve the elastic modulus and transmittance of lithium disilicate(LD)glass-ceramics.Through synergistically modulation of the crystal content ...The presence of Li_(2)Si_(2)O_(5) and LiAlSi_(4)O_(10) could effectively improve the elastic modulus and transmittance of lithium disilicate(LD)glass-ceramics.Through synergistically modulation of the crystal content and grain size,we obtained high strength and high transmittance of LD glass-ceramics.The optimal sample had a high transmittance of 90.3%,the hardness was 7.72 GPa,the fracture toughness was 1.07 MPa·m^(1/2),and the elastic modulus was 103.1 GPa.展开更多
The aim of this work was to investigate by X-ray photoelectron spectroscopy the effect of high pressure on the chemical environments of Si 2p, O 1s and Li 1s in lithium disilicate glass ceramic with stoichiometric com...The aim of this work was to investigate by X-ray photoelectron spectroscopy the effect of high pressure on the chemical environments of Si 2p, O 1s and Li 1s in lithium disilicate glass ceramic with stoichiometric composition Li2O·2SiO2 (LS2). A group of samples was processed at 2.5 GPa, 4 GPa and 7.7 GPa at room temperature and a second group was crystallized under high pressure and high temperature. Large shifts of the binding energy toward higher energies were observed in the X-ray photoelectron spectroscopy spectra for samples of the first group after densification at 2.5 and 4 GPa. For samples processed at 7.7 Gpa, the major component of the binding energy for the Si 2p environment remained practically unchanged compared to the pristine sample but new components, with smaller intensities, appeared in the spectra, indicating the existence of distinct Q-species induced by high pressure. This behavior may be related to changes in the number of bridged and non-bridged oxygen atoms in the glass structure. The results for the second group of samples, crystallized under high pressure, showed evidences of three binding energies for the O atoms, one of them related to non-bridged and two of them to bridged O atoms.展开更多
Li_(2)O-Al_(2)O_(3)-SiO_(2)(LAS)glass-ceramics were prepared by a melting method.Effects of different Al_(2)O_(3)content on the structure,crystallization,transmittance and fracture toughness of LAS glassceramics were ...Li_(2)O-Al_(2)O_(3)-SiO_(2)(LAS)glass-ceramics were prepared by a melting method.Effects of different Al_(2)O_(3)content on the structure,crystallization,transmittance and fracture toughness of LAS glassceramics were investigated by means of XRD,FESEM and other methods as well.The results showed that the glass transition temperature and crystallization temperature of samples increased as the content of Al_(2)O_(3)increased from 4.1 wt%to 13.1 wt%,which restrained the precipitation of lithium disilicate crystals.The main crystalline phase of glass-ceramics transformed from lithium disilicate and petalite to silicon dioxide,which reduced the fracture toughness of glass-ceramics.When the Al_(2)O_(3)content was 7.1 wt%,the specimen had outstanding transmittance and fracture toughness.The transmittance was 90.32%.The fracture toughness was 1.13 MPa•m^(1/2).Compared with high-alumina glass,the fracture toughness of the glass-ceramic was greatly improved,and it could be used as a new type of protective material for mobile devices.展开更多
Background The lithium disilicate-based ceramic is a newly developed all-ceramic material, which is lithium disilicate-based and could be used for fabricating almost all kinds of restorations. The extent of light atte...Background The lithium disilicate-based ceramic is a newly developed all-ceramic material, which is lithium disilicate-based and could be used for fabricating almost all kinds of restorations. The extent of light attenuation by ceramic material was material-dependent. Ceramic materials with different crystal composition or crystalline content would exhibit distinct light-absorbing characteristics. The aim of this study was to analyze the influence of ceramic thickness and light-curing time on the polymerization of a dual-curing resin luting material with a lithium disilicate-based ceramic. Methods A lithium disilicate-based ceramic was used in this study. The light attenuation caused by ceramic with different thickness was determined using a spectral radiometer. The commercial dual-cured resin cement was light-cured directly or through ceramic discs with different thickness (1, 2 and 3 mm, respectively) for different times (10, 20, 30, 40, 50 and 60 seconds, respectively). The polymerization efficiency of resin cement was expressed in terms as Vickers hardness (VHN) measured after 24 hours storage. Two-way analysis of variance (ANOVA) and Tukey's HSD tests were used to determine differences. Results Intensity of polymerizing light transmitted through ceramic discs was reduced from 584 mW/cm2 to about 216 mW/cm2, 80 mW/cm2 and 52 mW/cm2 at thicknesses of 1 mm, 2 mm and 3 mm, respectively. Resin cement specimens self-cured alone showed significantly lower hardness values. When resin cement was light-cured through ceramic discs with a thickness of 1 mm, 2 mm and 3 mm, no further increasing in hardness values was observed when light-curing time was more than 30 seconds, 40 seconds and 60 seconds, respectively. Conclusions Within the limitation of the present study, ceramic thickness and light-curing time had remarkable influence on the polymerization of dual-cured resin cement. When resin cement is light-cured beneath a lithium disilicate ceramic with different thickness, prolonging light-curing time accordingly may still be necessary to insure complete polymerization.展开更多
The novel dental ceramics can be fabricated at lower temperatures when sol-gel derived lithium disilicate glass ceramics(LDGC)was used as an additive for yttria stabilized tetragonal zirconia polycrystalline(Y-TZP)cer...The novel dental ceramics can be fabricated at lower temperatures when sol-gel derived lithium disilicate glass ceramics(LDGC)was used as an additive for yttria stabilized tetragonal zirconia polycrystalline(Y-TZP)ceramics.The effect of LDGC on the sintering,mechanical,and translucent properties of Y-TZP ceramics was investigated in the present study.The results showed that the LDGC additive effectively improved the densification of Y-TZP at 1100℃,which was much lower than the sintering temperature for pure Y-TZP.When sintered at 1100℃,the Y-TZP with 1 wt%LDGC reached a relative density of 95.45%,and prossessed a flexural strength of 482.4 MPa and a fracture toughness of 5.94 MPa-m12.Moreover,its translucency was also improved.While,the addition of LDGC could result in an escape of yttrium atoms from the grain lattice of zirconia,which induced the tetragonal-monoclinic transformation of zirconia and abnormal growth of monoclinic grains.The escaped yttrium atoms diffused into the intergranular glass phase.The results indicated that the novel Y-TZP-LDGC ceramics has a great potential to be used for all-ceramic restorations.展开更多
The behavior and mechanism of Li leaching from lithium aluminum silicate glass-ceramics which can be used as a secondary source of Li using aqueous NaOH solution was investigated.The Li leaching efficiency is increase...The behavior and mechanism of Li leaching from lithium aluminum silicate glass-ceramics which can be used as a secondary source of Li using aqueous NaOH solution was investigated.The Li leaching efficiency is increased with increasing concentration of NaOH, specific surface area, and reaction temperature.When leached under optimum conditions, 2 mol/L NaOH, 53 μm particle undersize, 1:10 solid/liquid ratio, 250 r/min stirring speed, 100℃ reaction temperature, 12 hr, the Li leaching efficiency was approximately 70%.However, when the leaching experiment was performed for 48 hr, the concentration of Li+ ions contained in the leach liquor decreased from 1160 to 236 mg/L.To investigate the origin of this phenomenon, the obtained leach residue was analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy.These analyses show that zeolite was formed around the lithium aluminum silicate glass-ceramics, which affected the leaching of by adsorbing Li+ ions.In addition, using the shrinking-core model and the Arrhenius equation, the leaching reaction with NaOH was found to depends on the chemical reaction of the two reactants, with a higher than 41.84 kJ/mol of the activation energy.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51702193 and 51502165)the General Project in Industrial Area of Shaanxi Province(Grant No.2020GY-281)+2 种基金the Natural Science Foundation of Shaanxi Provincial Department of Education(Grant No.20JK0525)the Shaanxi Provincial Education Department serves Local Scientific Research Plan(Grant No.20JC008)the Scientific Research Fund of Shaanxi University of Science&Technology(Grant No.BJ16-20 and BJ16-21).
文摘Self-reinforced lithium disilicate(Li_(2)Si_(2)O_(5),LD)glass-ceramics were hot pressing sintered by introducing 5 wt%Li_(2)Si_(2)O_(5)crystal seeds into two different glass compositions of SiO_(2)-Li_(2)O-P2O_(5)-ZrO_(2)-Al_(2)O_(3)-K_(2)O-La_(2)O_(3)(7C LD)and SiO_(2)-Li_(2)O-K_(2)O-La_(2)O_(3)(4C LD).The results show that the seeds play an important role in the crystallization inducement,and microstructural and property improvement of the glass,especially for the glass powder without the nucleating agent of P_(2)O_(5).The microstructure features a wider bimodal grain size distribution with large rod-like crystals epitaxially grown along the seeds and small crystals nucleated from the glass powder itself,contributing to the improvement of the performance especially the fracture toughness.The specimen of 4C LD glass with the addition of 5 wt%Li_(2)Si_(2)O_(5) seeds exhibited the best comprehensive properties with a good flexural strength(396±7 MPa),improved fracture toughness(3.31±0.19 MPa·m^(1/2)),and comparable translucency as IPS e.max.This research provides a new idea and method for the improvement of the fracture toughness of lithium disilicate glass-ceramics without affecting its aesthetic appearance,and lays the foundation for its clinical applications.
基金Funded by the National Natural Science Foundation of China(No.52372014)the Key R&D Project of Hubei Province(No.2022BAA025)the Key R&D Project of Jincheng City(No.20220120)。
文摘The presence of Li_(2)Si_(2)O_(5) and LiAlSi_(4)O_(10) could effectively improve the elastic modulus and transmittance of lithium disilicate(LD)glass-ceramics.Through synergistically modulation of the crystal content and grain size,we obtained high strength and high transmittance of LD glass-ceramics.The optimal sample had a high transmittance of 90.3%,the hardness was 7.72 GPa,the fracture toughness was 1.07 MPa·m^(1/2),and the elastic modulus was 103.1 GPa.
文摘The aim of this work was to investigate by X-ray photoelectron spectroscopy the effect of high pressure on the chemical environments of Si 2p, O 1s and Li 1s in lithium disilicate glass ceramic with stoichiometric composition Li2O·2SiO2 (LS2). A group of samples was processed at 2.5 GPa, 4 GPa and 7.7 GPa at room temperature and a second group was crystallized under high pressure and high temperature. Large shifts of the binding energy toward higher energies were observed in the X-ray photoelectron spectroscopy spectra for samples of the first group after densification at 2.5 and 4 GPa. For samples processed at 7.7 Gpa, the major component of the binding energy for the Si 2p environment remained practically unchanged compared to the pristine sample but new components, with smaller intensities, appeared in the spectra, indicating the existence of distinct Q-species induced by high pressure. This behavior may be related to changes in the number of bridged and non-bridged oxygen atoms in the glass structure. The results for the second group of samples, crystallized under high pressure, showed evidences of three binding energies for the O atoms, one of them related to non-bridged and two of them to bridged O atoms.
基金State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)(No.2011DA105356)。
文摘Li_(2)O-Al_(2)O_(3)-SiO_(2)(LAS)glass-ceramics were prepared by a melting method.Effects of different Al_(2)O_(3)content on the structure,crystallization,transmittance and fracture toughness of LAS glassceramics were investigated by means of XRD,FESEM and other methods as well.The results showed that the glass transition temperature and crystallization temperature of samples increased as the content of Al_(2)O_(3)increased from 4.1 wt%to 13.1 wt%,which restrained the precipitation of lithium disilicate crystals.The main crystalline phase of glass-ceramics transformed from lithium disilicate and petalite to silicon dioxide,which reduced the fracture toughness of glass-ceramics.When the Al_(2)O_(3)content was 7.1 wt%,the specimen had outstanding transmittance and fracture toughness.The transmittance was 90.32%.The fracture toughness was 1.13 MPa•m^(1/2).Compared with high-alumina glass,the fracture toughness of the glass-ceramic was greatly improved,and it could be used as a new type of protective material for mobile devices.
基金This study was supported in part by a grant from the National Natural Science Foundation of China (No. 51002185).
文摘Background The lithium disilicate-based ceramic is a newly developed all-ceramic material, which is lithium disilicate-based and could be used for fabricating almost all kinds of restorations. The extent of light attenuation by ceramic material was material-dependent. Ceramic materials with different crystal composition or crystalline content would exhibit distinct light-absorbing characteristics. The aim of this study was to analyze the influence of ceramic thickness and light-curing time on the polymerization of a dual-curing resin luting material with a lithium disilicate-based ceramic. Methods A lithium disilicate-based ceramic was used in this study. The light attenuation caused by ceramic with different thickness was determined using a spectral radiometer. The commercial dual-cured resin cement was light-cured directly or through ceramic discs with different thickness (1, 2 and 3 mm, respectively) for different times (10, 20, 30, 40, 50 and 60 seconds, respectively). The polymerization efficiency of resin cement was expressed in terms as Vickers hardness (VHN) measured after 24 hours storage. Two-way analysis of variance (ANOVA) and Tukey's HSD tests were used to determine differences. Results Intensity of polymerizing light transmitted through ceramic discs was reduced from 584 mW/cm2 to about 216 mW/cm2, 80 mW/cm2 and 52 mW/cm2 at thicknesses of 1 mm, 2 mm and 3 mm, respectively. Resin cement specimens self-cured alone showed significantly lower hardness values. When resin cement was light-cured through ceramic discs with a thickness of 1 mm, 2 mm and 3 mm, no further increasing in hardness values was observed when light-curing time was more than 30 seconds, 40 seconds and 60 seconds, respectively. Conclusions Within the limitation of the present study, ceramic thickness and light-curing time had remarkable influence on the polymerization of dual-cured resin cement. When resin cement is light-cured beneath a lithium disilicate ceramic with different thickness, prolonging light-curing time accordingly may still be necessary to insure complete polymerization.
基金supported by the Shanghai Committee of Science and Technology,China(No.17441904100).
文摘The novel dental ceramics can be fabricated at lower temperatures when sol-gel derived lithium disilicate glass ceramics(LDGC)was used as an additive for yttria stabilized tetragonal zirconia polycrystalline(Y-TZP)ceramics.The effect of LDGC on the sintering,mechanical,and translucent properties of Y-TZP ceramics was investigated in the present study.The results showed that the LDGC additive effectively improved the densification of Y-TZP at 1100℃,which was much lower than the sintering temperature for pure Y-TZP.When sintered at 1100℃,the Y-TZP with 1 wt%LDGC reached a relative density of 95.45%,and prossessed a flexural strength of 482.4 MPa and a fracture toughness of 5.94 MPa-m12.Moreover,its translucency was also improved.While,the addition of LDGC could result in an escape of yttrium atoms from the grain lattice of zirconia,which induced the tetragonal-monoclinic transformation of zirconia and abnormal growth of monoclinic grains.The escaped yttrium atoms diffused into the intergranular glass phase.The results indicated that the novel Y-TZP-LDGC ceramics has a great potential to be used for all-ceramic restorations.
基金supported by the Technology Innovation Program(No.20003877,Development of eco-friendly electrochemical recycling system for production of high purity(>99.5)lithium and lithium compounds)funded By the Ministry of Trade,Industry&Energy(MOTIE,Korea)。
文摘The behavior and mechanism of Li leaching from lithium aluminum silicate glass-ceramics which can be used as a secondary source of Li using aqueous NaOH solution was investigated.The Li leaching efficiency is increased with increasing concentration of NaOH, specific surface area, and reaction temperature.When leached under optimum conditions, 2 mol/L NaOH, 53 μm particle undersize, 1:10 solid/liquid ratio, 250 r/min stirring speed, 100℃ reaction temperature, 12 hr, the Li leaching efficiency was approximately 70%.However, when the leaching experiment was performed for 48 hr, the concentration of Li+ ions contained in the leach liquor decreased from 1160 to 236 mg/L.To investigate the origin of this phenomenon, the obtained leach residue was analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy.These analyses show that zeolite was formed around the lithium aluminum silicate glass-ceramics, which affected the leaching of by adsorbing Li+ ions.In addition, using the shrinking-core model and the Arrhenius equation, the leaching reaction with NaOH was found to depends on the chemical reaction of the two reactants, with a higher than 41.84 kJ/mol of the activation energy.