In this study, novel Carbon aerogel (CA)/Co<sub>3</sub>O<sub>4</sub>/Carbon (C) composites with a double protective structure are synthesized through a solvothermal method and in-situ polymeriz...In this study, novel Carbon aerogel (CA)/Co<sub>3</sub>O<sub>4</sub>/Carbon (C) composites with a double protective structure are synthesized through a solvothermal method and in-situ polymerization. The morphology and structure are characterized by X-ray diffraction, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Fourier transform infrared spectroscopy (FTIR). The loading content of active anode material <span style="white-space:normal;">Co</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">4</sub> in the composite is investigated by thermogravimetry, and the electrochemical properties of the composite are characterized by electrochemical impedance spectroscopy (EIS). The SEM results show that the nano-sized spherical <span style="white-space:normal;">Co</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">4</sub> particle is adhered to the inner Carbon aerogel (CA). The HRTEM result indicates the thickness of the prepared Carbon (C) up to 40 nm. Nano-sheet is coated on the surface of the <span style="white-space:normal;">Co</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">4</sub> particle. Compared with the pure <span style="white-space:normal;">Co</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">4</sub> anode materials, the Carbon aerogel (CA)/<span style="white-space:normal;">Co</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">4</sub>/Carbon (C) composites have better transport kinetics for both electron and lithium-ion in EIS testing results, which may contribute to its higher specific capacity and higher first coulomb efficiency. Due to the unique structure of the composite material with double protection against the volume expansion of <span style="white-space:normal;">Co</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">4</sub> when charged, the Carbon aerogel (CA)/<span style="white-space:normal;">Co</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">4</sub>/Carbon (C) composite material exhibits better cycle stability with a discharge capacity of 1180 mAh/g after 50 cycles. Therefore, the double protection strategy is verified as an effective method to improve the electrochemical performance of transition metal oxide with carbon composite as an anode material in lithium battery.展开更多
The effects of different coating layers on lithium metal anode formed by reacting with different controlled atmospheres(argon,CO_2–O_2(2:1),N_2,and CO_2–O_2–N_2(2:1:3))have been investigated.The obtained X...The effects of different coating layers on lithium metal anode formed by reacting with different controlled atmospheres(argon,CO_2–O_2(2:1),N_2,and CO_2–O_2–N_2(2:1:3))have been investigated.The obtained XRD,second ion mass spectroscopy(SIMS),and scanning probe microscope(SPM)results demonstrate the formation of coating layers composed of Li_2CO_3,Li_3N,and the mixture of them on lithium tablets,respectively.The Li/Li symmetrical cell and Li/S cell are assembled to prove the advantages of the protected lithium tablet on electrochemical performance.The comparison of SEM and SIMS characterizations before/after cycles clarifies that an SEI-like composition formed on the lithium tablets could modulate the interfacial stabilization between the lithium foil and the ether electrolyte.展开更多
文摘In this study, novel Carbon aerogel (CA)/Co<sub>3</sub>O<sub>4</sub>/Carbon (C) composites with a double protective structure are synthesized through a solvothermal method and in-situ polymerization. The morphology and structure are characterized by X-ray diffraction, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Fourier transform infrared spectroscopy (FTIR). The loading content of active anode material <span style="white-space:normal;">Co</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">4</sub> in the composite is investigated by thermogravimetry, and the electrochemical properties of the composite are characterized by electrochemical impedance spectroscopy (EIS). The SEM results show that the nano-sized spherical <span style="white-space:normal;">Co</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">4</sub> particle is adhered to the inner Carbon aerogel (CA). The HRTEM result indicates the thickness of the prepared Carbon (C) up to 40 nm. Nano-sheet is coated on the surface of the <span style="white-space:normal;">Co</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">4</sub> particle. Compared with the pure <span style="white-space:normal;">Co</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">4</sub> anode materials, the Carbon aerogel (CA)/<span style="white-space:normal;">Co</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">4</sub>/Carbon (C) composites have better transport kinetics for both electron and lithium-ion in EIS testing results, which may contribute to its higher specific capacity and higher first coulomb efficiency. Due to the unique structure of the composite material with double protection against the volume expansion of <span style="white-space:normal;">Co</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">4</sub> when charged, the Carbon aerogel (CA)/<span style="white-space:normal;">Co</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">4</sub>/Carbon (C) composite material exhibits better cycle stability with a discharge capacity of 1180 mAh/g after 50 cycles. Therefore, the double protection strategy is verified as an effective method to improve the electrochemical performance of transition metal oxide with carbon composite as an anode material in lithium battery.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0100100)the National Natural Science Foundation of China(Grants Nos.52315206 and 51502334)the Fund from Beijing Municipal Science&Technology Commission,China(Grants No.D171100005517001)
文摘The effects of different coating layers on lithium metal anode formed by reacting with different controlled atmospheres(argon,CO_2–O_2(2:1),N_2,and CO_2–O_2–N_2(2:1:3))have been investigated.The obtained XRD,second ion mass spectroscopy(SIMS),and scanning probe microscope(SPM)results demonstrate the formation of coating layers composed of Li_2CO_3,Li_3N,and the mixture of them on lithium tablets,respectively.The Li/Li symmetrical cell and Li/S cell are assembled to prove the advantages of the protected lithium tablet on electrochemical performance.The comparison of SEM and SIMS characterizations before/after cycles clarifies that an SEI-like composition formed on the lithium tablets could modulate the interfacial stabilization between the lithium foil and the ether electrolyte.