LiMn2O4 nano-wires with ideal size distribution were readily synthesized by flux method. Samples prepared conventionally were used as the comparison references to investigate the effect of flux. The structural, morpho...LiMn2O4 nano-wires with ideal size distribution were readily synthesized by flux method. Samples prepared conventionally were used as the comparison references to investigate the effect of flux. The structural, morphological and electrochemical properties of nano-sized materials were examined by powder X-ray diffraction(XRD) analysis, scanning electron microscopy(SEM) and charge-discharge cycling analysis. Results from galvanostatic charge-discharge analysis show that the samples prepared at 700 ℃ via flux method(FM-700) afford the highest initial discharge capacity of 125.5 mA·h/g between 3.0 to 4.3 V at a rate of 0.2 C. After 50 cycles, a cycling retention of 89.6% is evident. Overall, the LiMn2O4 nano-wires developed in this work seem to be promising cathode materials for lithium ion batteries suitable to different energy-saving settings.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.21301066, 21271082).
文摘LiMn2O4 nano-wires with ideal size distribution were readily synthesized by flux method. Samples prepared conventionally were used as the comparison references to investigate the effect of flux. The structural, morphological and electrochemical properties of nano-sized materials were examined by powder X-ray diffraction(XRD) analysis, scanning electron microscopy(SEM) and charge-discharge cycling analysis. Results from galvanostatic charge-discharge analysis show that the samples prepared at 700 ℃ via flux method(FM-700) afford the highest initial discharge capacity of 125.5 mA·h/g between 3.0 to 4.3 V at a rate of 0.2 C. After 50 cycles, a cycling retention of 89.6% is evident. Overall, the LiMn2O4 nano-wires developed in this work seem to be promising cathode materials for lithium ion batteries suitable to different energy-saving settings.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2020B090919005)the National Natural Science Foundation of China(21975274 and 52101276)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600)Shandong Provincial Natural Science Foundation(ZR2020KE032 and ZR2022QB160)the Youth Innovation Promotion Association of CAS(2021210)the Shandong Energy Institute(SEI)(SEI I202117)Parts of the work were also supported by the BMWi/BMWK project HiBrain(03ET039G)。