期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Chemical interaction motivated structure design of layered metal carbonate hydroxide/MXene composites for fast and durable lithium ion storage 被引量:1
1
作者 Huibin Guan Hanna He +1 位作者 Tianbiao Zeng Chuhong Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期633-641,I0015,共10页
Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow ... Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow active materials with promoted reaction reversibility,accelerated kinetic and restricted volume change still remains a huge challenge.Herein,a novel chemical interaction motivated structure design strategy has been proposed,and a chemically bonded Co(CO_(3))_(0.5)OH·0.11 H_(2)O@MXene(CoCH@MXene)layered-composite was fabricated for the first time.In such a composite,the chemical interaction between Co^(2+)and MXene drives the growth of smaller-sized CoCH crystals and the subsequent formation of interwoven CoCH wires sandwiched in-between MXene nanosheets.This unique layered structure not only encourages charge transfer for faster reaction dynamics,but buffers the volume change of CoCH during lithiation-delithiation process,owing to the confined crystal growth between conductive MXene layers with the help of chemical bonding.Besides,the sandwiched interwoven CoCH wires also prevent the stacking of MXene layers,further conducive to the electrochemical performance of the composite.As a result,the as-prepared CoCH@MXene anode demonstrates a high reversible capacity(903.1 mAh g^(-1)at 100 mA g^(-1))and excellent cycling stability(maintains 733.6 mAh g^(-1)at1000 mA g^(-1)after 500 cycles)for lithium ion batteries.This work highlights a novel concept of layerby-layer chemical interaction motivated architecture design for futuristic high performance electrode materials in energy storage systems. 展开更多
关键词 Chemical interaction motivated structure design Layer-by-layer structure Metal carbonate hydroxide Few-layer MXene Fast and durable lithium ion storage
下载PDF
Layered coordination polymer with two-dimensional covalent bismuth-organic networks:Semiconductor and lithium ion storage
2
作者 Mu-Qing Li Yulin Cao +3 位作者 Lei Qin Hua Cheng Weimin Yang Zhouguang Lu 《Nano Research》 SCIE EI CSCD 2024年第3期2181-2185,共5页
Single crystals of a bismuth-based coordination polymer(CP)with carboxyl-thiol ligands,[Bi(C_(8)H_(2)O_(4)S_(2))(C2H8N)]n(Bi-DSBDC-DMA,DMBDC=2,5-disulfur-1,4-dicarboxylate,DMA=dimethylamine),have been successfully syn... Single crystals of a bismuth-based coordination polymer(CP)with carboxyl-thiol ligands,[Bi(C_(8)H_(2)O_(4)S_(2))(C2H8N)]n(Bi-DSBDC-DMA,DMBDC=2,5-disulfur-1,4-dicarboxylate,DMA=dimethylamine),have been successfully synthesized.X-ray diffraction analysis reveals that Bi-DSBDC-DMA possesses a layered structure,with two-dimensional(2D)Bi-DSBDC networks alternating with layers composed of dimethylamine ions.This material demonstrates semiconducting properties,featuring an optical bandgap of 2.2 eV and an electrical conductivity of 2×10^(-8) S/cm.Furthermore,electrodes based on this material exhibit a capacity of 250 mAh/g after 200 cycles for lithium-ion storage. 展开更多
关键词 BISMUTH layer coordination polymer(CP) SEMICONDUCTOR lithium ion storage
原文传递
Post lithium ion batteries for emerging energy storage technologies
3
作者 Yan YU Xiaobo JI Hongjin FAN 《Green Energy & Environment》 SCIE 2018年第1期1-1,共1页
It is obvious that in the next ten years,lithium ion batteries are still the dominating power source for a wide range of products including consumable electronics,vehicles(cars,motorbikes,scooters,buses),drones,and ev... It is obvious that in the next ten years,lithium ion batteries are still the dominating power source for a wide range of products including consumable electronics,vehicles(cars,motorbikes,scooters,buses),drones,and even robots and tanks.However,in the pursuit of cost-effective,safety-reliable,and highly efficient energy storage technologies,researchers are developing 展开更多
关键词 Post lithium ion batteries for emerging energy storage technologies
下载PDF
Highly dispersed Co-Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage 被引量:7
4
作者 Yuqing Liao Chun Wu +6 位作者 Yaotang Zhong Min Chen Luyang Cai Huirong Wang Xiang Liu Guozhong Cao Weishan Li 《Nano Research》 SCIE EI CAS CSCD 2020年第1期188-195,共8页
A novel hybrid,highly dispersed spinel Co-Mo sulfide nanoparticles on reduced graphene oxide(Co3S4/CoMo2S4@rGO),is reported as anode for lithium and sodium ion storage.The hybrid is synthesized by one-step hydrotherma... A novel hybrid,highly dispersed spinel Co-Mo sulfide nanoparticles on reduced graphene oxide(Co3S4/CoMo2S4@rGO),is reported as anode for lithium and sodium ion storage.The hybrid is synthesized by one-step hydrothermal method but exhibits excellent lithium and sodium storage performances.The as-synthesized Co3S4/CoMo2S4@rGO presents reversible capacity of 595.4 mA·h·g^−1 and 408.8 mA·h·g^−1 after 100 cycles at a current density of 0.2 A·g^−1 for lithium and sodium ion storages,respectively.Such superior performances are attributed to the unique composition and structure of Co3S4/CoMo2S4@rGO.The rGO provides a good electronically conductive network and ensures the formation of spinel Co3S4/CoMo2S4 nanoparticles,the Co3S4/CoMo2S4 nanoparticles provide large reaction surface for lithium and sodium intercalation/deintercalation,and the spinel structure allows fast lithium and sodium ion diffusion in three dimensions. 展开更多
关键词 Co-Mo sulfide NANOPARTICLE reduced graphene oxide lithium and sodium ion storage
原文传递
Ultrathin nanobelts-assembled Chinese knot-like 3D TiO2 for fast and stable lithium storage
5
作者 Qili Wu Shiman He +6 位作者 Xianfeng Yang Jingling Yang Gaoren Li Yuying Meng Shengfu Tong Liqiang Mai Mingmei Wu 《Nano Research》 SCIE EI CAS CSCD 2018年第4期2116-2128,共13页
Nanostructured TiO2 has applications in solar cells, photocatalysts, and fast- charging, safe lithium ion batteries (LIBs). To meet the demand of high-capacity and high-rate LIBs with TiO2-based anodes, it is import... Nanostructured TiO2 has applications in solar cells, photocatalysts, and fast- charging, safe lithium ion batteries (LIBs). To meet the demand of high-capacity and high-rate LIBs with TiO2-based anodes, it is important to fine-tune the nanoarchitecture using a well-controlled synthesis approach. Herein, we report a new approach that involves epitaxial growth combined with topotactic conversion to synthesize a unique type of three-dimensional (3D) TiO2 nano- architecture that is assembled by well-oriented ultrathin nanobelts. The whole nanoarchitecture displays a 3D Chinese knot-like morphology; the core consists of robust perpendicular interwoven nanobelts and the shell is made of extended nanobelts. The nanobelts oriented in three perpendicular [001]A directions facilitate Li+ penetration and diffusion. Abundant anatase/TiO2-B interfaces provide a large amount of interfacial pseudocapacitance. A high and stable capacity of 130 mA.h.g-1 was obtained after 3,000 cycles at 10 A·g-1 (50 C), and the high-rate property of our material was greater than that of many recently reported high-rate TiO2 anodes. Our result provides, not only a novel synthesis strategy, but also a new type of 3D anatase TiO2 anode that may be useful in developing long-lasting and fast-charging batteries. 展开更多
关键词 three-dimensional (3D) nanoarchitectures ultrathin nanobelts TIO2 lithium ion storage ultrahigh rate battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部