Li_(3)PO_(4)@Li_(0.99)K_(0.01)Ni_(0.83)Co_(0.11)Mn_(O.06)O_(2)(NCM-KP) cathode powders are synthesized via K^(+)doping in calcination processes and H_3PO_4 coating in sol-gel processes.K^(+) precisely enters into the ...Li_(3)PO_(4)@Li_(0.99)K_(0.01)Ni_(0.83)Co_(0.11)Mn_(O.06)O_(2)(NCM-KP) cathode powders are synthesized via K^(+)doping in calcination processes and H_3PO_4 coating in sol-gel processes.K^(+) precisely enters into the lattice to widen the(003) plane to 0.4746 nm with a lower cationic disordered degree of 1.87%.Moreover,the surface residual lithium salts are treated by H_3PO_4 to generate a uniform Li_(3)PO_(4) coating layer of approximately 11.41 nm,which completely covers on the surface of secondary spherical particles to improve the interfacial stability.At 25℃,the NCM-KP electrode delivers a discharge specific capacity of 148.9 mAh·g^(-1) with a remarkable capacity retention ratio of 84.1% after 200 cycles at 1.0C and retains a high reversible specific capacity of 154.4 mAh·g^(-1) at 5.0C.Even at 1.0C and 60℃,it can maintain a reversible discharge specific capacity of 114.6 mAh·g^(-1) with 0.21% of capacity decay per cycle after 200 cycles,which is significantly lower than 0.40% for the pristine NCM powders.Importantly,the charge transfer resistance of 238.89 Ω for the NCM-KP electrode is significantly lower than 947.41 Ω for the pristine NCM one by restricting the interfacial side reactions.Therefore,combining K+doping and Li_(3)PO_(4) coating is an effective strategy to enable the significant improvement of the electrochemical property of high-nickel cathode materials,which may be mainly attributed to the widened diffusion pathway and the formed Li_(3)PO_(4) protective layer,thus promoting Li~+diffusion rate and preventing the erosion of HF.展开更多
Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the s...Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 materials was studied.It is found that when the molar ratio of ammonia to total transition-metal cations is 2.7:1,uniform particle size distribution of the complex metal hydroxide is observed via scanning electron microscopy.The average particle size of Li[Ni1/3Co1/3Mn1/3]O2 materials was measured to be about 500 nm,and the tap-density was measured to be approximately 2.37 g/cm3,which is comparable with that of commercialized LiCoO2.XRD analysis indicates that the presently synthesized Li[Ni1/3Co1/3Mn1/3]O2 has a hexagonal layered-structure.The initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode material is determined to be 181.5 mA·h/g using a Li/Li[Ni1/3Co1/3Mn1/3]O2 cell operated at 0.1C in the voltage range of 2.8-4.5 V.The discharge capacity at the 50th cycle at 0.5C is 170.6 mA·h/g.展开更多
Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anode...Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle.展开更多
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
In recent years,the new energy storage system,such as lithium ion batteries(LIBs),has attracted much attention.In order to meet the demand of industrial progress for longer cycle life,higher energy density and cost ef...In recent years,the new energy storage system,such as lithium ion batteries(LIBs),has attracted much attention.In order to meet the demand of industrial progress for longer cycle life,higher energy density and cost efficiency,a quantity of research has been conducted on the commercial application of LIBs.However,it is difficult to achieve satisfying safety and cycling performance simultaneously.There may be thermal runaway(TR),external impact,overcharge and overdischarge in the process of battery abuse,which makes the safety problem of LIBs more prominent.In this review,we summarize recent progress in the smart safety materials design towards the goal of preventing TR of LIBs reversibly from different abuse conditions.Benefiting from smart responsive materials and novel structural design,the safety of LIBs can be improved a lot.We expect to provide a comprehensive reference for the development of smart and safe lithium-based battery materials.展开更多
If the operating voltage of anode materials is below 1.0 V versus Lit/Li,the side reaction between electrolyte and anode materials will occur extensively.Thus,high-voltage anode materials have aroused interest recentl...If the operating voltage of anode materials is below 1.0 V versus Lit/Li,the side reaction between electrolyte and anode materials will occur extensively.Thus,high-voltage anode materials have aroused interest recently.In this work,we report the preparation of PNb9O25 nanofiber via a facile electrospinning method.The PNb9O25 nanofiber shows the high rate performance and excellent cycling performance when it is used as anode in lithium ions batteries.For instance,the PNb9O25 nanofiber can deliver a capacity of 233,212.1,193.8,and 181.4 mA h g^(-1) at 0.2,1,3,and 6C,respectively.After 1000 cycles,it can reach at 134.3 mA h g^(-1) with capacity retention of 70.9%.Meanwhile,the ex situ X-ray photoelectron spectroscopy technique has been adopted to investigate the evolution in valence state of each element for PNb9O25 nanofiber.In addition,the PNb9O25 nanofiber is chosen as the anode material in lithium ion full cell in this work,demonstrating the potential for practical application.展开更多
The total conductivity of Li-biphenyl-1,2-dimethoxyethane solution(Li_xBp(DME)_(9.65), Bp = biphenyl, DME = 1,2-dimethoxyethane, x = 0.25, 0.50, 1.00, 1.50, 2.00) is measured by impedance spectroscopy at a tempe...The total conductivity of Li-biphenyl-1,2-dimethoxyethane solution(Li_xBp(DME)_(9.65), Bp = biphenyl, DME = 1,2-dimethoxyethane, x = 0.25, 0.50, 1.00, 1.50, 2.00) is measured by impedance spectroscopy at a temperature range from 0℃ to 40℃. The Li_(1.50)Bp(DME)_(9.65) has the highest total conductivity 10.7 m S/cm. The conductivity obeys Arrhenius law with the activation energy(E_(a(x=0.50))= 0.014 eV, E_(a(x=1.00))= 0.046 eV). The ionic conductivity and electronic conductivity of Li_xBp(DME)_(9.65) solutions are investigated at 20℃ using the isothermal transient ionic current(ITIC) technique with an ion-blocking stainless steal electrode. The ionic conductivity and electronic conductivity of Li_(1.00)Bp(DME)_(9.65) are measured as 4.5 mS/cm and 6.6 mS/cm, respectively. The Li_(1.00)Bp(DME)_(9.65) solution is tested as an anode material of half liquid lithium ion battery due to the coexistence of electronic conductivity and ionic conductivity. The lithium iron phosphate(LFP) and Li_(1.5)Al_(0.5)Ti_(1.5)(PO_4)_3(LATP) are chosen to be the counter electrode and electrolyte, respectively. The assembled cell is cycled in the voltage range of 2.2 V-3.75 V at a current density of 50 mA/g. The potential of Li_(1.00)Bp(DME)_(9.65) solution is about 0.3 V vs. Li~+/Li, which indicates the solution has a strong reducibility. The Li_(1.00)Bp(DME)_(9.65) solution is also used to prelithiate the anode material with low first efficiency, such as hard carbon, soft carbon and silicon.展开更多
NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and t...NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and the mechanism of copper loss in slag were investigated. 98.83% Co, 98.39% Ni and 93.57% Cu were recovered under the optimum conditions of slag former/battery mass ratio of 4.0:1, smelting temperature of 1723 K, and smelting mass ratio of time of 30 min. The FeO-SiO2-Al2O3 slag system for the smelting process is appropriate under the conditions of m(FeO):m(SiO2)=0.58:1?1.03:1, and 17.19%?21.52% Al2O3 content. The obtained alloy was mainly composed of Fe-Co-Cu-Ni solid solution including small amounts of matte. The obtained slag mainly consisted of fayalite and hercynite. Meanwhile, the mechanism of copper loss is the mechanical entrainment from strip-like fayalite particles in the main form of copper sulfide and metallic copper.展开更多
Flower-like CuO and flower-like CuO/graphene composite were prepared successfully by hydrothermal method. They were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption, temperature-pr...Flower-like CuO and flower-like CuO/graphene composite were prepared successfully by hydrothermal method. They were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption, temperature-programmed reduction, and thermogravimetric analysis. It is found that the flower-like CuO microspheres, which are composed of CuO nanosheets, possess an average diameter of 4.2 μm and a Brunauer–Emmett–Teller surface area of 12.6 m2/g. Compared with the flower-like CuO, the obtained flower-like CuO/graphene composite shows an enhanced electrochemical performance with a higher capacity of 603 mA-h/g at 0.1 C rate and 382 mA-h/g at 1 C rate, and exhibits a better cycle stability with a high capacity retention of 95.5 % after 50 cycles even though at 1 C rate.展开更多
An efficient synthesis of carbon nanofibers by pyrolysis of as-prepared polypyrrole nanowires was reported. Under the subsequent KOH activation, a significant morphology variation was detected and the obtained sample ...An efficient synthesis of carbon nanofibers by pyrolysis of as-prepared polypyrrole nanowires was reported. Under the subsequent KOH activation, a significant morphology variation was detected and the obtained sample took on a ribbon-like structure. The morphology and structure of the carbon nanofibers and carbon nanoribbons were characterized. When the as-prepared one-dimensional carbon nanostructures were used as anode materials in lithium ion batteries, both of them exhibited superior cyclical stability and good rate properties. After 50 cycles, the reversible capacity of carbon nanofibers electrode maintained 530 mA·h/g. Concerning carbon nanoribbons, the reversible capacity is always larger than 850 mA·h/g and the reversible capacity retention after 23 cycles is 86%.展开更多
Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galva...Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+.展开更多
Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, ...Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.展开更多
Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were inve...Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were investigated. The structure and properties of the composites were determined by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The results show that samples have silicon/flake graphite/amorphous carbon composite structure, good spherical appearances, and better electrochemical performance than pure nano-Si and FG/C composites. Compared with the Si/FG/C composite using washing powder as dispersant, the Si/FG/C composite using sodium dodecyl benzene sulfonate (SDBS) as dispersant has better electrochemical performance with a reversible capacity of 602.68 mA·h/g, and a capacity retention ratio of 91.58 % after 20 cycles.展开更多
We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dis...We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant. The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible specific capacity of 546 (mA-h)/g which is 45 higher than the theoretical value of commercial graphite anode.展开更多
Y-doped Li3V2(PO4)3 cathode materials were prepared by a carbothermal reduction(CTR) process.The properties of the Y-doped Li3V2(PO4)3 were investigated by X-ray diffraction(XRD) and electrochemical measuremen...Y-doped Li3V2(PO4)3 cathode materials were prepared by a carbothermal reduction(CTR) process.The properties of the Y-doped Li3V2(PO4)3 were investigated by X-ray diffraction(XRD) and electrochemical measurements.XRD studies showed that the Y-doped Li3V2(PO4)3 had the same monoclinic structure as the undoped Li3V2(PO4)3.The Y-doped Li3V2(PO4)3 samples were investigated on the Li extraction/insertion performances through charge/discharge, cyclic voltammogram(CV), and electrochemical impedance spectra(EIS).The optimal doping content of Y was x=0.03 in Li3V2-xYx(PO4)3 system.The Y-doped Li3V2(PO4)3 samples showed a better cyclic ability.The electrode reaction reversibility was enhanced, and the charge transfer resistance was decreased through the Y-doping.The improved electrochemical perormances of the Y-doped Li3V2(PO4)3 cathode materials were attributed to the addition of Y3+ ion by stabilizing the monoclinic structure.展开更多
Some compounds of LiCo 1- x RE x O 2 (RE=rare earth elements and x =0.01~0.03) were prepared by doping rare earth elements to LiCoO 2 via solid state synthesis. The microstructure characteristics of t...Some compounds of LiCo 1- x RE x O 2 (RE=rare earth elements and x =0.01~0.03) were prepared by doping rare earth elements to LiCoO 2 via solid state synthesis. The microstructure characteristics of the LiCo 1- x RE x O 2 were investigated by XRD. It was found that the lattice parameters c are increased and the lattice volumes are enlarged compared to that of LiCoO 2. Moreover, the performance of LiCo 1- x RE x O 2 as the cathode material in lithium ion battery is improved, especially LiCo 1- x Y x O 2 and LiCo 1- x La x O 2. The initial charge/discharge capacities of LiCo 0.99 Y 0.01 O 2 and LiCo 0.99 La 0.01 O 2 are 174/154 (mAh·g -1 ) and 159/149 (mAh·g -1 ) respectively, while those for LiCoO 2 working in the same way are only 139/131 (mAh·g -1 ).展开更多
Na-doped Li1.05Mn2O4 cathodes were synthesized using a sol-gel process.The samples were characterized by X-ray diffractometry(XRD),cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and charge-discharge...Na-doped Li1.05Mn2O4 cathodes were synthesized using a sol-gel process.The samples were characterized by X-ray diffractometry(XRD),cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and charge-discharge measurements. The results show that all the samples exhibit the same cubic spinel phase structure without impurity.The lattice constant and unit cell volume decrease with increasing the sodium dopant amount.As the molar ratio of sodium to manganese(x=n(Na)/n(Mn))increases from 0 to 0.03,the initial discharge capacity of the Li1.05Mn2O4 cathodes decreases from 119.2 to 107.9 mA·h/g,and the discharge capability at large current rate and the storage performance decline dramatically,while cycling performance at room temperature and 55℃are improved.The CV and EIS studies indicate that reversibility of Li1.05Mn2O4 cathodes decreases and the electrochemical impedance increases with increasing the sodium dopant amount.展开更多
Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo2O4and ...Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo2O4and Co3O4were synthesized by a facile and cost-effective approach via the calcination of MOF-74 precursors and tested as anode materials for lithium ion batteries. Compared with Co3O4, the electrochemical properties of the obtained porous nanostructured ZnCo2O4exhibit higher specific capacity, more excellent cycling stability and better rate capability. It demonstrates a reversible capacity of 1243.2 m Ah/g after 80 cycles at 100 m A/g and an excellent rate performance with high average discharge specific capacities of 1586.8, 994.6, 759.6 and 509.2 m Ah/g at 200, 400, 600 and 800 m A/g, respectively.The satisfactory electrochemical performances suggest that this porous nanostructured ZnCo2O4is potentially promising for application as an efficient anode material for lithium ion batteries.展开更多
A new SnO2-Fe2O3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO2 and Fe2O3 nanoparticles(NPs) were homogeneously located on the surface of ...A new SnO2-Fe2O3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO2 and Fe2O3 nanoparticles(NPs) were homogeneously located on the surface of SWCNTs,as confirmed by X-ray diffraction(XRD),transmission electron microscope(TEM) and energy dispersive X-ray spectroscopy(EDX).Due to the synergistic effect of different components,the as synthesized SnO2-Fe2O3/SWCNTs composite as an anode material for lithium-ion batteries exhibited excellent electrochemical performance with a high capacity of 692 mAh·g-1 which could be maintained after 50 cycles at 200 mA·g-1.Even at a high rate of2000 mA·g-1,the capacity was still remained at 656 mAh·g-1.展开更多
Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/ino...Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/inorganic hybrid crosslinked networks on the separators, simply by grafting polymerization and condensation reaction. The considerable silicon-oxygen crosslinked heat-resistance networks are responsible for the reduced thermal shrinkage. The strong chemical bonds between networks and separators promise enough mechanical support even at high temperature. The shrinkage at 150 ℃ for 30 min in the mechanical direction was 38.6% and 4.6% for the pristine and present graft-modified separators, respectively. Meanwhile, the grafting organic-inorganic hybrid crosslink networks mainly occupied part of void in the internal pores of the separators, so the thicknesses of the graft-modified separators were similar with the pristine one. The half cells prepared with the modified separators exhibited almost identical electrochemical properties to those with the commercial separators, thus proving that, in order to enhance the thermal stability of lithium ion battery, this kind of grafting-modified separators may be a better alternative to conventional silica nanoparticle layers-coated polyolefin separators.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.52274292 and 51874046)the Outstanding Youth Foundation of Hubei Province (No.2020CFA090)。
文摘Li_(3)PO_(4)@Li_(0.99)K_(0.01)Ni_(0.83)Co_(0.11)Mn_(O.06)O_(2)(NCM-KP) cathode powders are synthesized via K^(+)doping in calcination processes and H_3PO_4 coating in sol-gel processes.K^(+) precisely enters into the lattice to widen the(003) plane to 0.4746 nm with a lower cationic disordered degree of 1.87%.Moreover,the surface residual lithium salts are treated by H_3PO_4 to generate a uniform Li_(3)PO_(4) coating layer of approximately 11.41 nm,which completely covers on the surface of secondary spherical particles to improve the interfacial stability.At 25℃,the NCM-KP electrode delivers a discharge specific capacity of 148.9 mAh·g^(-1) with a remarkable capacity retention ratio of 84.1% after 200 cycles at 1.0C and retains a high reversible specific capacity of 154.4 mAh·g^(-1) at 5.0C.Even at 1.0C and 60℃,it can maintain a reversible discharge specific capacity of 114.6 mAh·g^(-1) with 0.21% of capacity decay per cycle after 200 cycles,which is significantly lower than 0.40% for the pristine NCM powders.Importantly,the charge transfer resistance of 238.89 Ω for the NCM-KP electrode is significantly lower than 947.41 Ω for the pristine NCM one by restricting the interfacial side reactions.Therefore,combining K+doping and Li_(3)PO_(4) coating is an effective strategy to enable the significant improvement of the electrochemical property of high-nickel cathode materials,which may be mainly attributed to the widened diffusion pathway and the formed Li_(3)PO_(4) protective layer,thus promoting Li~+diffusion rate and preventing the erosion of HF.
基金Project(50721003)supported by the National Natural Science Foundation of ChinaProject(07JJ6082)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Open Project of State Key Laboratory of Powder Metallurgy in Central South University,China
文摘Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 materials was studied.It is found that when the molar ratio of ammonia to total transition-metal cations is 2.7:1,uniform particle size distribution of the complex metal hydroxide is observed via scanning electron microscopy.The average particle size of Li[Ni1/3Co1/3Mn1/3]O2 materials was measured to be about 500 nm,and the tap-density was measured to be approximately 2.37 g/cm3,which is comparable with that of commercialized LiCoO2.XRD analysis indicates that the presently synthesized Li[Ni1/3Co1/3Mn1/3]O2 has a hexagonal layered-structure.The initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode material is determined to be 181.5 mA·h/g using a Li/Li[Ni1/3Co1/3Mn1/3]O2 cell operated at 0.1C in the voltage range of 2.8-4.5 V.The discharge capacity at the 50th cycle at 0.5C is 170.6 mA·h/g.
基金National Research Foundation,Grant/Award Number:2022R1A2C1092273。
文摘Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle.
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
基金support by,National Key Research and Development Program(2023YFB2503700 and 2023YFC3008804)the Beijing Municipal Science&Technology Commission No.Z231100006123003+1 种基金the National Science Foundation of China(22071133)the Beijing Natural Science Foundation(No.Z220020).
文摘In recent years,the new energy storage system,such as lithium ion batteries(LIBs),has attracted much attention.In order to meet the demand of industrial progress for longer cycle life,higher energy density and cost efficiency,a quantity of research has been conducted on the commercial application of LIBs.However,it is difficult to achieve satisfying safety and cycling performance simultaneously.There may be thermal runaway(TR),external impact,overcharge and overdischarge in the process of battery abuse,which makes the safety problem of LIBs more prominent.In this review,we summarize recent progress in the smart safety materials design towards the goal of preventing TR of LIBs reversibly from different abuse conditions.Benefiting from smart responsive materials and novel structural design,the safety of LIBs can be improved a lot.We expect to provide a comprehensive reference for the development of smart and safe lithium-based battery materials.
基金NSAF joint Fund(U1830106)National Natural Science Foundation of China(U1632114,21673064)K.C.Wong Magna Fund in Ningbo University.
文摘If the operating voltage of anode materials is below 1.0 V versus Lit/Li,the side reaction between electrolyte and anode materials will occur extensively.Thus,high-voltage anode materials have aroused interest recently.In this work,we report the preparation of PNb9O25 nanofiber via a facile electrospinning method.The PNb9O25 nanofiber shows the high rate performance and excellent cycling performance when it is used as anode in lithium ions batteries.For instance,the PNb9O25 nanofiber can deliver a capacity of 233,212.1,193.8,and 181.4 mA h g^(-1) at 0.2,1,3,and 6C,respectively.After 1000 cycles,it can reach at 134.3 mA h g^(-1) with capacity retention of 70.9%.Meanwhile,the ex situ X-ray photoelectron spectroscopy technique has been adopted to investigate the evolution in valence state of each element for PNb9O25 nanofiber.In addition,the PNb9O25 nanofiber is chosen as the anode material in lithium ion full cell in this work,demonstrating the potential for practical application.
基金Project supported by the National Natural Science Foundation of China(Grant No.52315206)the Ministry of Science and Technology of China(Grant No.2016YFB0100100)the Beijing Municipal Science and Technology Commission,China(Grant No.D151100003115003)
文摘The total conductivity of Li-biphenyl-1,2-dimethoxyethane solution(Li_xBp(DME)_(9.65), Bp = biphenyl, DME = 1,2-dimethoxyethane, x = 0.25, 0.50, 1.00, 1.50, 2.00) is measured by impedance spectroscopy at a temperature range from 0℃ to 40℃. The Li_(1.50)Bp(DME)_(9.65) has the highest total conductivity 10.7 m S/cm. The conductivity obeys Arrhenius law with the activation energy(E_(a(x=0.50))= 0.014 eV, E_(a(x=1.00))= 0.046 eV). The ionic conductivity and electronic conductivity of Li_xBp(DME)_(9.65) solutions are investigated at 20℃ using the isothermal transient ionic current(ITIC) technique with an ion-blocking stainless steal electrode. The ionic conductivity and electronic conductivity of Li_(1.00)Bp(DME)_(9.65) are measured as 4.5 mS/cm and 6.6 mS/cm, respectively. The Li_(1.00)Bp(DME)_(9.65) solution is tested as an anode material of half liquid lithium ion battery due to the coexistence of electronic conductivity and ionic conductivity. The lithium iron phosphate(LFP) and Li_(1.5)Al_(0.5)Ti_(1.5)(PO_4)_3(LATP) are chosen to be the counter electrode and electrolyte, respectively. The assembled cell is cycled in the voltage range of 2.2 V-3.75 V at a current density of 50 mA/g. The potential of Li_(1.00)Bp(DME)_(9.65) solution is about 0.3 V vs. Li~+/Li, which indicates the solution has a strong reducibility. The Li_(1.00)Bp(DME)_(9.65) solution is also used to prelithiate the anode material with low first efficiency, such as hard carbon, soft carbon and silicon.
基金Project(JS-211)supported by the State-Owned Enterprise Electric Vehicle Industry Alliance,China
文摘NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and the mechanism of copper loss in slag were investigated. 98.83% Co, 98.39% Ni and 93.57% Cu were recovered under the optimum conditions of slag former/battery mass ratio of 4.0:1, smelting temperature of 1723 K, and smelting mass ratio of time of 30 min. The FeO-SiO2-Al2O3 slag system for the smelting process is appropriate under the conditions of m(FeO):m(SiO2)=0.58:1?1.03:1, and 17.19%?21.52% Al2O3 content. The obtained alloy was mainly composed of Fe-Co-Cu-Ni solid solution including small amounts of matte. The obtained slag mainly consisted of fayalite and hercynite. Meanwhile, the mechanism of copper loss is the mechanical entrainment from strip-like fayalite particles in the main form of copper sulfide and metallic copper.
基金Project (20110490594) supported by China Postdoctoral Science Foundation
文摘Flower-like CuO and flower-like CuO/graphene composite were prepared successfully by hydrothermal method. They were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption, temperature-programmed reduction, and thermogravimetric analysis. It is found that the flower-like CuO microspheres, which are composed of CuO nanosheets, possess an average diameter of 4.2 μm and a Brunauer–Emmett–Teller surface area of 12.6 m2/g. Compared with the flower-like CuO, the obtained flower-like CuO/graphene composite shows an enhanced electrochemical performance with a higher capacity of 603 mA-h/g at 0.1 C rate and 382 mA-h/g at 1 C rate, and exhibits a better cycle stability with a high capacity retention of 95.5 % after 50 cycles even though at 1 C rate.
基金Projects (51204209,51274240) supported by the National Natural Science Foundation of China
文摘An efficient synthesis of carbon nanofibers by pyrolysis of as-prepared polypyrrole nanowires was reported. Under the subsequent KOH activation, a significant morphology variation was detected and the obtained sample took on a ribbon-like structure. The morphology and structure of the carbon nanofibers and carbon nanoribbons were characterized. When the as-prepared one-dimensional carbon nanostructures were used as anode materials in lithium ion batteries, both of them exhibited superior cyclical stability and good rate properties. After 50 cycles, the reversible capacity of carbon nanofibers electrode maintained 530 mA·h/g. Concerning carbon nanoribbons, the reversible capacity is always larger than 850 mA·h/g and the reversible capacity retention after 23 cycles is 86%.
基金Project (20771100) supported by the National Natural Science Foundation of China
文摘Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+.
文摘Lithium ion batteries are complicated distributed parameter systems that can be described preferably by partial differential equations and a field theory. To reduce the solution difficulty and the calculation amount, if a distributed parameter system is described by ordinary differential equations (ODE) during the analysis and the design of distributed parameter system, the reliability of the system description will be reduced, and the systemic errors will be introduced. Studies on working condition real-time monitoring can improve the security because the rechargeable LIBs are widely used in many electronic systems and electromechanical equipment. Single particle model (SPM) is the simplification of LIB under some approximations, and can estimate the working parameters of a LIB at the faster simulation speed. A LIB modelling algorithm based on PDEs and SPM is proposed to monitor the working condition of LIBs in real time. Although the lithium ion concentration is an unmeasurable distributed parameter in the anode of LIB, the working condition monitoring model can track the real time lithium ion concentration in the anode of LIB, and calculate the residual which is the difference between the ideal data and the measured data. A fault alarm can be triggered when the residual is beyond the preset threshold. A simulation example verifies that the effectiveness and the accuracy of the working condition real-time monitoring model of LIB based on PDEs and SPM.
基金Project(2011FJ1005)supported by the Science and Technology Programs of Hunan Province,China
文摘Silicon/flake graphite/carbon (Si/FG/C) composites were synthesized with different dispersants via spray drying and subsequent pyrolysis, and effects of dispersants on the characteristics of the composites were investigated. The structure and properties of the composites were determined by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The results show that samples have silicon/flake graphite/amorphous carbon composite structure, good spherical appearances, and better electrochemical performance than pure nano-Si and FG/C composites. Compared with the Si/FG/C composite using washing powder as dispersant, the Si/FG/C composite using sodium dodecyl benzene sulfonate (SDBS) as dispersant has better electrochemical performance with a reversible capacity of 602.68 mA·h/g, and a capacity retention ratio of 91.58 % after 20 cycles.
基金This work was supported by the National Natural Science Foundation of China (No.21373197), the 100 Talents Program of the Chinese Academy of Sciences, USTC Startup and the Fundamental Research Funds for the Central Universities (WK2060140018).
文摘We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant. The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible specific capacity of 546 (mA-h)/g which is 45 higher than the theoretical value of commercial graphite anode.
基金supported by Guangxi Natural Science Foundation (0832259)Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning (GuiJiaoRen [2007]71)Research Funds of the Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment
文摘Y-doped Li3V2(PO4)3 cathode materials were prepared by a carbothermal reduction(CTR) process.The properties of the Y-doped Li3V2(PO4)3 were investigated by X-ray diffraction(XRD) and electrochemical measurements.XRD studies showed that the Y-doped Li3V2(PO4)3 had the same monoclinic structure as the undoped Li3V2(PO4)3.The Y-doped Li3V2(PO4)3 samples were investigated on the Li extraction/insertion performances through charge/discharge, cyclic voltammogram(CV), and electrochemical impedance spectra(EIS).The optimal doping content of Y was x=0.03 in Li3V2-xYx(PO4)3 system.The Y-doped Li3V2(PO4)3 samples showed a better cyclic ability.The electrode reaction reversibility was enhanced, and the charge transfer resistance was decreased through the Y-doping.The improved electrochemical perormances of the Y-doped Li3V2(PO4)3 cathode materials were attributed to the addition of Y3+ ion by stabilizing the monoclinic structure.
文摘Some compounds of LiCo 1- x RE x O 2 (RE=rare earth elements and x =0.01~0.03) were prepared by doping rare earth elements to LiCoO 2 via solid state synthesis. The microstructure characteristics of the LiCo 1- x RE x O 2 were investigated by XRD. It was found that the lattice parameters c are increased and the lattice volumes are enlarged compared to that of LiCoO 2. Moreover, the performance of LiCo 1- x RE x O 2 as the cathode material in lithium ion battery is improved, especially LiCo 1- x Y x O 2 and LiCo 1- x La x O 2. The initial charge/discharge capacities of LiCo 0.99 Y 0.01 O 2 and LiCo 0.99 La 0.01 O 2 are 174/154 (mAh·g -1 ) and 159/149 (mAh·g -1 ) respectively, while those for LiCoO 2 working in the same way are only 139/131 (mAh·g -1 ).
基金Project(2007CB613607) supported by the National Basic Research Program of ChinaProjects(2009FJ1002, 2009CK3062) supported by the Science and Technology Program of Hunan Province, China
文摘Na-doped Li1.05Mn2O4 cathodes were synthesized using a sol-gel process.The samples were characterized by X-ray diffractometry(XRD),cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and charge-discharge measurements. The results show that all the samples exhibit the same cubic spinel phase structure without impurity.The lattice constant and unit cell volume decrease with increasing the sodium dopant amount.As the molar ratio of sodium to manganese(x=n(Na)/n(Mn))increases from 0 to 0.03,the initial discharge capacity of the Li1.05Mn2O4 cathodes decreases from 119.2 to 107.9 mA·h/g,and the discharge capability at large current rate and the storage performance decline dramatically,while cycling performance at room temperature and 55℃are improved.The CV and EIS studies indicate that reversibility of Li1.05Mn2O4 cathodes decreases and the electrochemical impedance increases with increasing the sodium dopant amount.
基金Jiangsu provincial financial support of Fundamental Conditions and Science and Technology for people’s livelihood for Jiangsu key laboratory of Advanced Metallic Materials(grant number BM2007204)the National Natural Science Foundation of China(grant number 21475021,21427807)+1 种基金the Natural Science Foundation of Jiangsu Province(grant number BK20141331)the Fundamental Research Funds for the Central Universities(grant number2242016K40083)
文摘Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo2O4and Co3O4were synthesized by a facile and cost-effective approach via the calcination of MOF-74 precursors and tested as anode materials for lithium ion batteries. Compared with Co3O4, the electrochemical properties of the obtained porous nanostructured ZnCo2O4exhibit higher specific capacity, more excellent cycling stability and better rate capability. It demonstrates a reversible capacity of 1243.2 m Ah/g after 80 cycles at 100 m A/g and an excellent rate performance with high average discharge specific capacities of 1586.8, 994.6, 759.6 and 509.2 m Ah/g at 200, 400, 600 and 800 m A/g, respectively.The satisfactory electrochemical performances suggest that this porous nanostructured ZnCo2O4is potentially promising for application as an efficient anode material for lithium ion batteries.
基金supported by the National Key Project on Basic Research(Grant No.2011CB935904)the National Natural Science Foundation of China(Grant No.21171163,91127020)NSF for Distinguished Young Scholars of Fujian Province(Grant No.2013J06006)
文摘A new SnO2-Fe2O3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO2 and Fe2O3 nanoparticles(NPs) were homogeneously located on the surface of SWCNTs,as confirmed by X-ray diffraction(XRD),transmission electron microscope(TEM) and energy dispersive X-ray spectroscopy(EDX).Due to the synergistic effect of different components,the as synthesized SnO2-Fe2O3/SWCNTs composite as an anode material for lithium-ion batteries exhibited excellent electrochemical performance with a high capacity of 692 mAh·g-1 which could be maintained after 50 cycles at 200 mA·g-1.Even at a high rate of2000 mA·g-1,the capacity was still remained at 656 mAh·g-1.
基金supported by the MOST(Grant No.2013CB934000,2014DFG71590,2011CB935902,2010DFA72760,2011CB711202,2013AA050903,2011AA11A257 and 2011AA11A254)China Postdoctoral Science Foundation(Grant No.2013M530599 and 2013M540929)+2 种基金Tsinghua University Initiative Scientific Research Program(Grant No.2010THZ08116,2011THZ08139,2011THZ01004 and 2012THZ08129)the State Key Laboratory of Automotive Safety and Energy(No.ZZ2012-011)Suzhou(Wujiang)Automotive Research Institute,Tsinghua University,Project No.2012WJ-A-01
文摘Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/inorganic hybrid crosslinked networks on the separators, simply by grafting polymerization and condensation reaction. The considerable silicon-oxygen crosslinked heat-resistance networks are responsible for the reduced thermal shrinkage. The strong chemical bonds between networks and separators promise enough mechanical support even at high temperature. The shrinkage at 150 ℃ for 30 min in the mechanical direction was 38.6% and 4.6% for the pristine and present graft-modified separators, respectively. Meanwhile, the grafting organic-inorganic hybrid crosslink networks mainly occupied part of void in the internal pores of the separators, so the thicknesses of the graft-modified separators were similar with the pristine one. The half cells prepared with the modified separators exhibited almost identical electrochemical properties to those with the commercial separators, thus proving that, in order to enhance the thermal stability of lithium ion battery, this kind of grafting-modified separators may be a better alternative to conventional silica nanoparticle layers-coated polyolefin separators.