The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the meta...The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the metallic manganese that helps for catalyzing electrolyte decomposition.This could poison and damage the solid electrolyte interface(SEI) film,leading to the the capacity fade in Li-ion batteries.We propose a new mechanism that Mn(Ⅱ) deposites at the anode hinders and/or blocks the intercalation/de-intercalation of lithium ions,which leads to the capacity fade in Li-ion batteries.Based on the new mechanism assumption,a kind of new structure with core-shell characteristic is designed to inhabit manganese ion dissolution,thus improving electrochemical cycle performance of the cell.By the way,this mechanism hypothesis is also supported by the results of these experiments.The LiMn2-xTixO4 shell layer enhances cathode resistance to corrosion attack and effectively suppresses dissolution of Mn,then improves battery cycle performance with LiMn_2O_4 cathode,even at high rate and elevated temperature.展开更多
Lithium manganese oxides(Li Mn2 O4, LMO) have attracted significant attention as important cathode materials for lithium-ion batteries(LIBs), which require fast charging based on their intrinsic electrochemical proper...Lithium manganese oxides(Li Mn2 O4, LMO) have attracted significant attention as important cathode materials for lithium-ion batteries(LIBs), which require fast charging based on their intrinsic electrochemical properties. However, these properties are limited by the rapid fading of cycling retention, particularly at high temperatures, because of the severe Mn corrosion triggered by the chemical reaction with fluoride(F-) species existing in the cell. To alleviate this issue, three types of silyl ether(Si–O)-functionalized task-specific additives are proposed, namely methoxytrimethylsilane, dimethoxydimethylsilane, and trimethoxymethylsilane. Ex-situ NMR analyses demonstrated that the Si-additives selectively scavenged the F-species as Si forms new chemical bonds with F via a nucleophilic substitution reaction due to the high binding affinity of Si with F-, thereby leading to a decrease in the F concentration in the cell. Furthermore, the addition of Si-additives in the electrolyte did not significantly affect the ionic conductivity or electrochemical stability of the electrolyte, indicating that these additives are compatible with conventional electrolytes. In addition, the cells cycled with Si-additives exhibited improved cycling retention at room temperature and 45 °C. Among these candidates, a combination of MTSi and the LMO cathode was found to be the most suitable choice in terms of cycling retention(71.0%), whereas the cell cycled with the standard electrolyte suffered from the fading of cycling retention triggered by Mn dissolution(64.4%). Additional ex-situ analyses of the cycled electrodes using SEM, TEM, EIS, XPS, and ICP-MS demonstrated that the use of Si-additives not only improved the surface stability of the LMO cathode but also that of the graphite anode, as the Si-additives prevent Mn corrosion. This inhibits the formation of cracks on the surface of the LMO cathode, facilitating the formation of a stable solid electrolyte interphase layer on the surface of the graphite anode. Therefore, Si-additives modified by Si–O functional groups can be effectively used to increase the overall electrochemical performance of the LMO cathode material.展开更多
Lithium manganese oxide (LiMn2O4) is a principal cathode material for high power and high energy density electrochemical storage on account of its low cost, non-toxicity, and ease of preparation relative to other ca...Lithium manganese oxide (LiMn2O4) is a principal cathode material for high power and high energy density electrochemical storage on account of its low cost, non-toxicity, and ease of preparation relative to other cathode materials. However, there are well-documented problems with capacity fade of lithium ion batteries containing LiMn2O4. Experimental observations indicate that the manganese content of the electrolyte increases as an electrochemical cell containing LiMn2O4 ages, suggesting that active material loss by dissolution of divalent manganese from the LiMn2O4 surface is the primary reason for reduced cell life in LiMn2O4 batteries. To improve the retention of manganese in the active material, it is key to understand the reactions that occur at the cathode surface. Although a thin layer of electrolyte decomposition products is known to form at the cathode surface, the speciation and reaction mechanisms of Mn^2+ in this interface layer are not yet well understood. To bridge this knowledge gap, reactive force field (ReaxFF) based molecular dynamics was applied to investigate the reactions occurring at the LiMn2O4 cathode surface and the mechanisms that lead to manganese dissolution. The ReaxFFMD simulations reveal that the cathode-electrolyte interface layer is composed of oxida- tion products of electrolyte solvent molecules including aldehydes, esters, alcohols, polycarbonates, and organic radicals. The oxidation reaction pathways for the electro- lyre solvent molecules involve the formation of surface hydroxyl species that react with exposed manganese atoms on the cathode surface. The presence of hydrogen fluoride (HF) induces formation of inorganic metal fluorides and surface hydroxyl species. Reaction products predicted by ReaxFF-based MD are in agreement with experimentally identified cathode-electrolyte interface compounds. An overall cathode-electrolyte interface reaction scheme is proposed based on the molecular simulation results.展开更多
Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO ...Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO via facile pyrolysis of potassium Prussian blue.The multilayer interface is visually observed using an atomic-resolution scanning transmission electron microscope and a high-resolution transmission electron microscope.Combined with the electrochemical characterization,the redox of lattice oxygen is suppressed during the initial charging.In situ X-ray diffraction and the high-resolution transmission electron microscope demonstrate that the suppressed evolution of lattice oxygen eliminates the variation in the unit cell parameters during initial(de)lithiation,which further prevents lattice distortion during long cycling.As a result,the initial Coulombic efficiency of the modified LRMO is up to 87.31%,and the rate capacity and long-term cycle stability also improved considerably.In this work,a facile surface reconstruction strategy is used to suppress vigorous anionic redox,which is expected to stimulate material design in high-performance lithium ion batteries.展开更多
Lithium-substituted LixMn2O4 (x = 0.98, 1.03, 1.08) spinel samples were synthesized by solid-state reaction. X-ray diffraction (XRD) patterns show that the prepared samples have a spinel structure with a space gro...Lithium-substituted LixMn2O4 (x = 0.98, 1.03, 1.08) spinel samples were synthesized by solid-state reaction. X-ray diffraction (XRD) patterns show that the prepared samples have a spinel structure with a space group of Fd 3 m. The cubic lattice parameter was determined from least-squares fitting of the XRD data. Li1.03Mn2O4 shows high capacity at both low and high current densities, while Lil.08Mn2O4shows good cycling performance but relatively low capacity when cycled at both room and elevated temperatures. A variety of electrochemical methods were employed to investigate the electrochemical properties of these series of spinel LixMn2O4.展开更多
Spinel LiMn_(2)O_(4)has been considered to be the most promising alternative cathode material for the new generation of lithium-ion batteries in terms of its low cost,non-toxicity and easy manufacture.The spinel lithi...Spinel LiMn_(2)O_(4)has been considered to be the most promising alternative cathode material for the new generation of lithium-ion batteries in terms of its low cost,non-toxicity and easy manufacture.The spinel lithium manganese mixed oxides were prepared from lithium nitrate,manganese nitrate and citric acid by a sol-gel method and were characterized by thermogravimetric analysis,X-ray diffraction,cyclic voltammetry and constant current charging-discharging technique.The different sintering temperatures for different time have strong influence on the structure,initial discharge capacity and cycling performance of the lithium manganese oxide.It shows that the lithium manganese oxides sintered at 700℃for 10 h have a single spinel structure and better electrochemical properties.The initial discharging capacity can be up to 125.9 mAh·g^(-1),even after six cycles,it still retains 109.1 mAh·g^(-1).展开更多
Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn204 are investigated....Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn204 are investigated. Compared with the micro-sized LiMn2O4, the nano-LiMn2O4 possesses a high initial capacity (120 mAh/g) at a discharge rate of 0.2 C (29.6 mA/g). The nano-LiMn2O4 also has a good high-rate discharge capability, retaining 91% of its capacity at a discharge rate of 10 C and 73~ at a discharge rate of 40 C. In particular, the nano-LiMn2O4 shows an excellent high-rate pulse discharge capability. The cut-off voltage at the end of 50-ms pulse discharge with a discharge rate of 80 C is above 3.40 V, and the voltage returns to over 4.10 V after the pulse discharge. These results show that the prepared nano-LiMn2O4 could be a potential cathode material for the power sources with the capability to deliver very high-rate pulse currents.展开更多
Spinel lithium manganese oxide cathode materials were synthesized using the ultrasonic-assisted sol-gel method. The synthesized samples were investigated by differential thermal analysis (DTA) and thermogravimetry ...Spinel lithium manganese oxide cathode materials were synthesized using the ultrasonic-assisted sol-gel method. The synthesized samples were investigated by differential thermal analysis (DTA) and thermogravimetry (TG), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), and the charge-discharge test. TG-DTA shows that significant mass loss occurs in two temperature regions during the synthesis of LiLa0.01Mn1.9903.99F0.01. XRD data indicate that all samples exhibit the same pure spinel phase, and LiLa0.01Mn1.9903.99F0.01 and LiLa0.01Mn1.9904 samples have a better crystallinity than LiMn2O4. SEM images indicate that LiLa0.01Mn1.9903.99F0.01 has a slightly smaller particle size and a more regular morphology structure with narrow size distribution. The charge-discharge test reveals that the initial capacities of LiMn2O4, LiLa0.01Mn1.99O4, and LiLa0.01Mn1.99O3.99F0.01 are 130, 123, and 126 mAh·g^-1, respectively, and the capacity retention rates of the initial value, after 50 cycles, are 84.8%, 92.3%, and 92.1%, respectively. The electrode coulomb efficiency and CV reveal that the electrode synthesized by the ultrasonic-assisted sol-gel (UASG) method has a better re- versibility than the electrode synthesized by the sol-gel method.展开更多
Several series of LiRE x Mn 2-x O 4(RE=Ce, Nd) samples prepared at different contents and in different rare earth metals substitution were studied in order to further understand the dependence of the elec...Several series of LiRE x Mn 2-x O 4(RE=Ce, Nd) samples prepared at different contents and in different rare earth metals substitution were studied in order to further understand the dependence of the electrochemical performance on the doping rare earth metals. These cathodes were more tolerant to repeat lithium extraction and insertion than a standard LiMn 2O 4 spinel electrode in spite of a small reduction in the initial capacity. X ray photoelectron spectroscopy results show that the Mn 4+ contents for spinel LiMn 2O 4 directly affected the initial capacity and cyclability of LiMn 2O 4.展开更多
Three kinds of processes, high temperature solid state reaction, precipitation and solgel technique were used to synthsize spinel phase LiMn2O4. XRD, DTATG results show that phasepure spinel LiMn2O4 could be synthesiz...Three kinds of processes, high temperature solid state reaction, precipitation and solgel technique were used to synthsize spinel phase LiMn2O4. XRD, DTATG results show that phasepure spinel LiMn2O4 could be synthesized under the lowest calcined temperature by the solgel technique compared to the precipitation method and solid state reaction. BET, SEM and electrochemical measurements results demonstrate that the features of the powders affect directly the electrochemical capacities; large specific area and small homogeneous grain size are of advantage for the lithium ion insertion and extraction in the charge and discharge process.展开更多
The effects of methylene methanedisulfonate(MMDS) on the high-temperature(0℃) cycle performance of LiMnO/graphite cells are investigated.By addition of 2 wt%MMDS into a routine electrolyte,the high-temperature cy...The effects of methylene methanedisulfonate(MMDS) on the high-temperature(0℃) cycle performance of LiMnO/graphite cells are investigated.By addition of 2 wt%MMDS into a routine electrolyte,the high-temperature cycling performance of LiMn204/graphite cells can be significantly improved.The analysis of differential capacity curves and energy-dispersive X-ray spectrometry(EDX) indicates that MMDS decomposed on both cathode and anode.The three-electrode system of pouch cell is used to reveal the capacity loss mechanism in the cells.It is shown that the capacity fading of cells without MMDS in the electrolytes is due to irreversible lithium consumption during cycling and irreversible damage of LiMnOmaterial,while the capacity fading of cell with 2 wt%MMDS in electrolytes mainly originated from irreversible lithium consumption during cycling.展开更多
LiMn2O4 thin films were prepared by solution deposition using lithium acetate and manganese acetate us raw materials. The phase constitution and surface morphalogy were observed by X-ray diffraction and scanning elect...LiMn2O4 thin films were prepared by solution deposition using lithium acetate and manganese acetate us raw materials. The phase constitution and surface morphalogy were observed by X-ray diffraction and scanning electron microscopy. The electrochemical properties of the thin films were studied by cycilc voltammetry, charge- discharge experiments and impedance spectroscopy in 1 mol· L^-1 LiPF6 / EC- DMC solution using lithium metal as both the counter and reference electrodes. The films prepared by this method are of spinel phase. The lattice parameter increases with the annealing temperature aud annealing time. The film annealed at 750 ℃ for 30 minutes has the highest capacity of 34.5 μAh ·cm^- 2·μm^-1 , and its capacity loss per cycle is 0. 05% afrer being cycled 100 times.展开更多
In order to improve the cycle and rate performance of LiNi0.5Mn1.5O4, LiCr2 Ni0.5 Mn1.5 O (0≤Y≤0.15) particles were Y -Y -Y 4 synthesized by the sucrose-aided combustion method. The effects of Cr doping in LiNi0.5...In order to improve the cycle and rate performance of LiNi0.5Mn1.5O4, LiCr2 Ni0.5 Mn1.5 O (0≤Y≤0.15) particles were Y -Y -Y 4 synthesized by the sucrose-aided combustion method. The effects of Cr doping in LiNi0.5Mn1.5O4 on the structures and electrochemical properties were investigated. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge test and electrochemical impedance spectrum (EIS). The results indicate that the LiCr2 Ni0.5 Mn1.5 O possess a spinel structure and small particle size, and LiCr0.2Ni0.4Mn1.4O4exhibits Y -Y -Y 4 the best cyclic and rate performance. It can deliver discharge capacities of 143 and 104 mA·h/g at 1C and 10C, respectively, with good capacity retention of 96.5% at 1C after 50 cycles.展开更多
LiMn2O4 thin films of different thickness were derived from solution deposition and heat treated by rapid thermal annealing. The phase identification and surface morphology were studied by X-ray diffraction and scanni...LiMn2O4 thin films of different thickness were derived from solution deposition and heat treated by rapid thermal annealing. The phase identification and surface morphology were studied by X-ray diffraction and scanning electron microscopy. The electrochemical properties of the films were examined by galvanostatic charge-discharge experiments and electrochemical impedance spectroscopy. LiMn2O4 thin films of different thickness derived from solution deposition and rapid thermal annealing are homogeneous and crack free with the grain size between 20 nm and 50 nm. The specific capacity of these films is between 42 and 47 μAh· cm^2· μm^-1. The capacity decreases with the increase of discharge current density. The capacity loss per cycle increases from 0.012% to 0.16% after being cycled 50 times as the film thickness increases from 0.18 μm to 1.04 μm. The lithium diffusion coefficients of these films are in the same order of 10-11 cm^2· s^-1.展开更多
Li0.33MnO2 cathode material was synthesized by solid state reaction. The material showed a small coherent domain size about 10 nm determined by X-ray diffraction and transmission electron microscopy. The electrochemic...Li0.33MnO2 cathode material was synthesized by solid state reaction. The material showed a small coherent domain size about 10 nm determined by X-ray diffraction and transmission electron microscopy. The electrochemical properties of the material were studied in different potential windows of 3.5-2.0 V and 4.3-2.0 V. An irreversible transformation to spinel phase was observed in the initial several cycles, which was more prominent on cycling at 4.3-2.0 V. Electrochemical impedance spectroscopy showed that the Li^+ diffusion coefficient of the material was about 2× 10^-9 cm^2/s. Li0.33MnO2 showed a reversible discharge capacity of 140 and 200 mA·h/g in the potential windows of 3.5-2.0 V and 4.3-2.0 V, respectively. But the capacity retention at 4.3-2.0 V was poor due to the thicker spinel layer formed on the material surface.展开更多
The differential thermal analysis (DTA) curves were measured at different heating rates in flowing air for studying the synthesis of the spinel LiMn2O3 with Li2CO3 and MnO2, The reaction began at about 503K, and fin...The differential thermal analysis (DTA) curves were measured at different heating rates in flowing air for studying the synthesis of the spinel LiMn2O3 with Li2CO3 and MnO2, The reaction began at about 503K, and finished at about 873K. The apparent activation energy of Kissinger method was about 122.77kJ.mol^-1, the reaction orderwas 1.67, the frequency factor was 7.81×10^9, and therefore the dinetic epuation was dδ/dt=A·exp(- E/RT)·(1-δ)^n=7.81×10^9, exp(-122770/RT)·(l-δ)^1.67 . Coats-Redfem integral method was used to analyze the DTA curves of the samples at different heating rates, and the calculated apparent activation energy and frequency factor were 112. 13kJ· mol^-1 and 1.18 × 10^9, respectively, rather close to that of Kissinger method. X-ray diffraction (XRD) and scanning electron microscope (SEM) results shown that the synthesized LiMn2O3 possesses pure phase, regular shape and normal particle distribution.展开更多
In this work the surface of LiNi0.5Mn1.5O4(LMN)particles is modified by Mn3O4 coating through a simple wet grinding method,the electronic conductivity is significantly improved from 1.53×10^-7 S/cm to 3.15×1...In this work the surface of LiNi0.5Mn1.5O4(LMN)particles is modified by Mn3O4 coating through a simple wet grinding method,the electronic conductivity is significantly improved from 1.53×10^-7 S/cm to 3.15×10^-5 S/cm after 2.6 wt%Mn3O4 coating.The electrochemical test results indicate that Mn3O4 coating dramatically enhances both rate performance and cycling capability(at 55℃)of LNM.Among the samples,2.6 wt%Mn3O4-coated LNM not only exhibits excellent rate capability(a large capacity of 108 m Ah/g at 10 C rate)but also shows 78%capacity retention at 55 ℃ and 1 C rate after 100 cycles.展开更多
Gas generation induced by parasitic reactions in lithium-metal batteries(LMB)has been regarded as one of the fundamental barriers to the reversibility of this battery chemistry,which occurs via the complex interplays ...Gas generation induced by parasitic reactions in lithium-metal batteries(LMB)has been regarded as one of the fundamental barriers to the reversibility of this battery chemistry,which occurs via the complex interplays among electrolytes,cathode,anode,and the decomposition species that travel across the cell.In this work,a novel in situ differential electrochemical mass spectrometry is constructed to differentiate the speciation and source of each gas product generated either during cycling or during storage in the presence of cathode chemistries of varying structure and nickel contents.It unambiguously excludes the trace moisture in electrolyte as the major source of hydrogen and convincingly identifies the layer-structured NCM cathode material as the source of instability that releases active oxygen from the lattice at high voltages when NCM experiences H2→H3 phase transition,which in turn reacts with carbonate solvents,producing both CO_(2)and proton at the cathode side.Such proton in solvated state travels across the cell and becomes the main source for hydrogen generated at the anode side.Mechanisms are proposed to account for these irreversible reactions,and two electrolyte additives based on phosphate structure are adopted to mitigate the gas generation based on the understanding of the above decomposition chemistries.展开更多
MnO 2 was prepared by column method from normal spinel LiMn 2O 4 with purity of 99.38%.The influence of LiMn 2O 4 grain size and acidity of leaching solution on the lithium leaching process was studied.The result...MnO 2 was prepared by column method from normal spinel LiMn 2O 4 with purity of 99.38%.The influence of LiMn 2O 4 grain size and acidity of leaching solution on the lithium leaching process was studied.The results show that the appropriate range of LiMn 2O 4 grain size was 60-160 meshes and the concentration of leaching solution HCl was 0.1 mol·L -1.The adsorption capacity Q of λ-MnO 2 for lithium increased with the increase of pH and changed markedly at pH 6.0-10.0.It was 3.80mmol/g at pH 12.0.The distribution coefficients K d of Li + and Na + were 3.406×10 4 and 2.300 respectively,and the separation coefficient α Li Na was 1.481×10 4 at pH 6.5.As a result,λ-MnO 2 is a high performance ion-sieve material for lithium ion.展开更多
3D porous nano-LiMn2O4(nano-LMO)is successfully prepared at 250℃ by a low temperature pyrolysis,using porous MnO2 and lithium acetate as reactants.The as-formed porous samples are demonstrated to be constructed by we...3D porous nano-LiMn2O4(nano-LMO)is successfully prepared at 250℃ by a low temperature pyrolysis,using porous MnO2 and lithium acetate as reactants.The as-formed porous samples are demonstrated to be constructed by well-defined and uniform cubic nanocrystals with particle sizes regulated from tens to hundreds of nanometers by adjusting the annealing temperature.Due to its proper particle size with perfect crystallization(-50 nm)and rich pores,sample LMO-265,prepared at 265℃,exhibits high performance as an aqueous lithium ion cathode.It can present a high specific capacity of 102 mAh g1 at a current density of 5℃ with a greatly improved rate capability(57.3%,68C)and capacity retention(70.7%,after 5000 cycles at 13.5C)in 1 M Li_(2)SO_(4).When assembled with commercial used active carbon(AC)to form an aqueous hybrid capacitor,it can deliver a high energy density of 15.8 Wh kg1 at a large power density of 9 kW kg1 with a good cycling life of 71.6%after 5000 at 2 Ag^(-1).Considering of its simple and economical preparation,as-prepared porous LMO can be regarded as a promising high-performance cathode material in aqueous electrolyte.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.21561016,21661015)Jiangxi Provincial Science&Technology Program(Nos.20133BBE50010,20142BDH80020,and 20161BBE50052)Science&Technology Program of Jiangxi Provincial Education Bureau(No.GJJ150775)
文摘The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the metallic manganese that helps for catalyzing electrolyte decomposition.This could poison and damage the solid electrolyte interface(SEI) film,leading to the the capacity fade in Li-ion batteries.We propose a new mechanism that Mn(Ⅱ) deposites at the anode hinders and/or blocks the intercalation/de-intercalation of lithium ions,which leads to the capacity fade in Li-ion batteries.Based on the new mechanism assumption,a kind of new structure with core-shell characteristic is designed to inhabit manganese ion dissolution,thus improving electrochemical cycle performance of the cell.By the way,this mechanism hypothesis is also supported by the results of these experiments.The LiMn2-xTixO4 shell layer enhances cathode resistance to corrosion attack and effectively suppresses dissolution of Mn,then improves battery cycle performance with LiMn_2O_4 cathode,even at high rate and elevated temperature.
基金supported by National Research Foundation of Korea grant from the Korean government (MSIP) (NRF2019R1C1C1002249, and NRF-2017M1A2A2044506)。
文摘Lithium manganese oxides(Li Mn2 O4, LMO) have attracted significant attention as important cathode materials for lithium-ion batteries(LIBs), which require fast charging based on their intrinsic electrochemical properties. However, these properties are limited by the rapid fading of cycling retention, particularly at high temperatures, because of the severe Mn corrosion triggered by the chemical reaction with fluoride(F-) species existing in the cell. To alleviate this issue, three types of silyl ether(Si–O)-functionalized task-specific additives are proposed, namely methoxytrimethylsilane, dimethoxydimethylsilane, and trimethoxymethylsilane. Ex-situ NMR analyses demonstrated that the Si-additives selectively scavenged the F-species as Si forms new chemical bonds with F via a nucleophilic substitution reaction due to the high binding affinity of Si with F-, thereby leading to a decrease in the F concentration in the cell. Furthermore, the addition of Si-additives in the electrolyte did not significantly affect the ionic conductivity or electrochemical stability of the electrolyte, indicating that these additives are compatible with conventional electrolytes. In addition, the cells cycled with Si-additives exhibited improved cycling retention at room temperature and 45 °C. Among these candidates, a combination of MTSi and the LMO cathode was found to be the most suitable choice in terms of cycling retention(71.0%), whereas the cell cycled with the standard electrolyte suffered from the fading of cycling retention triggered by Mn dissolution(64.4%). Additional ex-situ analyses of the cycled electrodes using SEM, TEM, EIS, XPS, and ICP-MS demonstrated that the use of Si-additives not only improved the surface stability of the LMO cathode but also that of the graphite anode, as the Si-additives prevent Mn corrosion. This inhibits the formation of cracks on the surface of the LMO cathode, facilitating the formation of a stable solid electrolyte interphase layer on the surface of the graphite anode. Therefore, Si-additives modified by Si–O functional groups can be effectively used to increase the overall electrochemical performance of the LMO cathode material.
文摘Lithium manganese oxide (LiMn2O4) is a principal cathode material for high power and high energy density electrochemical storage on account of its low cost, non-toxicity, and ease of preparation relative to other cathode materials. However, there are well-documented problems with capacity fade of lithium ion batteries containing LiMn2O4. Experimental observations indicate that the manganese content of the electrolyte increases as an electrochemical cell containing LiMn2O4 ages, suggesting that active material loss by dissolution of divalent manganese from the LiMn2O4 surface is the primary reason for reduced cell life in LiMn2O4 batteries. To improve the retention of manganese in the active material, it is key to understand the reactions that occur at the cathode surface. Although a thin layer of electrolyte decomposition products is known to form at the cathode surface, the speciation and reaction mechanisms of Mn^2+ in this interface layer are not yet well understood. To bridge this knowledge gap, reactive force field (ReaxFF) based molecular dynamics was applied to investigate the reactions occurring at the LiMn2O4 cathode surface and the mechanisms that lead to manganese dissolution. The ReaxFFMD simulations reveal that the cathode-electrolyte interface layer is composed of oxida- tion products of electrolyte solvent molecules including aldehydes, esters, alcohols, polycarbonates, and organic radicals. The oxidation reaction pathways for the electro- lyre solvent molecules involve the formation of surface hydroxyl species that react with exposed manganese atoms on the cathode surface. The presence of hydrogen fluoride (HF) induces formation of inorganic metal fluorides and surface hydroxyl species. Reaction products predicted by ReaxFF-based MD are in agreement with experimentally identified cathode-electrolyte interface compounds. An overall cathode-electrolyte interface reaction scheme is proposed based on the molecular simulation results.
基金This work was financially supported by the High‐level Talents'Discipline Construction Fund of Shandong University(31370089963078)the Shandong Provincial Science and Technology Major Project(2018JM RH0211 and 2017CXGC1010)+3 种基金the Research Funds of Shandong University(10000089395121)the Natural Science Foundation of Shandong Province(ZR2019MEM052 and ZR2017MEM002)The National Natural Science Foundation of China(grant no.52002287)the Start‐up Funding of Wenzhou University are acknowledged.
文摘Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO via facile pyrolysis of potassium Prussian blue.The multilayer interface is visually observed using an atomic-resolution scanning transmission electron microscope and a high-resolution transmission electron microscope.Combined with the electrochemical characterization,the redox of lattice oxygen is suppressed during the initial charging.In situ X-ray diffraction and the high-resolution transmission electron microscope demonstrate that the suppressed evolution of lattice oxygen eliminates the variation in the unit cell parameters during initial(de)lithiation,which further prevents lattice distortion during long cycling.As a result,the initial Coulombic efficiency of the modified LRMO is up to 87.31%,and the rate capacity and long-term cycle stability also improved considerably.In this work,a facile surface reconstruction strategy is used to suppress vigorous anionic redox,which is expected to stimulate material design in high-performance lithium ion batteries.
基金the National Natural Science Foundation of China (No. 50272012).
文摘Lithium-substituted LixMn2O4 (x = 0.98, 1.03, 1.08) spinel samples were synthesized by solid-state reaction. X-ray diffraction (XRD) patterns show that the prepared samples have a spinel structure with a space group of Fd 3 m. The cubic lattice parameter was determined from least-squares fitting of the XRD data. Li1.03Mn2O4 shows high capacity at both low and high current densities, while Lil.08Mn2O4shows good cycling performance but relatively low capacity when cycled at both room and elevated temperatures. A variety of electrochemical methods were employed to investigate the electrochemical properties of these series of spinel LixMn2O4.
基金This work was financially supported by the Program of YET and NCET and the Specialized Research Fund for the Doctoral Program of Higher Education of MOE of China(No.20050699011).
文摘Spinel LiMn_(2)O_(4)has been considered to be the most promising alternative cathode material for the new generation of lithium-ion batteries in terms of its low cost,non-toxicity and easy manufacture.The spinel lithium manganese mixed oxides were prepared from lithium nitrate,manganese nitrate and citric acid by a sol-gel method and were characterized by thermogravimetric analysis,X-ray diffraction,cyclic voltammetry and constant current charging-discharging technique.The different sintering temperatures for different time have strong influence on the structure,initial discharge capacity and cycling performance of the lithium manganese oxide.It shows that the lithium manganese oxides sintered at 700℃for 10 h have a single spinel structure and better electrochemical properties.The initial discharging capacity can be up to 125.9 mAh·g^(-1),even after six cycles,it still retains 109.1 mAh·g^(-1).
基金supported by the National Natural Science Foundation for Postdoctoral Scientists of China (Grant No. 20090451554)
文摘Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn204 are investigated. Compared with the micro-sized LiMn2O4, the nano-LiMn2O4 possesses a high initial capacity (120 mAh/g) at a discharge rate of 0.2 C (29.6 mA/g). The nano-LiMn2O4 also has a good high-rate discharge capability, retaining 91% of its capacity at a discharge rate of 10 C and 73~ at a discharge rate of 40 C. In particular, the nano-LiMn2O4 shows an excellent high-rate pulse discharge capability. The cut-off voltage at the end of 50-ms pulse discharge with a discharge rate of 80 C is above 3.40 V, and the voltage returns to over 4.10 V after the pulse discharge. These results show that the prepared nano-LiMn2O4 could be a potential cathode material for the power sources with the capability to deliver very high-rate pulse currents.
文摘Spinel lithium manganese oxide cathode materials were synthesized using the ultrasonic-assisted sol-gel method. The synthesized samples were investigated by differential thermal analysis (DTA) and thermogravimetry (TG), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), and the charge-discharge test. TG-DTA shows that significant mass loss occurs in two temperature regions during the synthesis of LiLa0.01Mn1.9903.99F0.01. XRD data indicate that all samples exhibit the same pure spinel phase, and LiLa0.01Mn1.9903.99F0.01 and LiLa0.01Mn1.9904 samples have a better crystallinity than LiMn2O4. SEM images indicate that LiLa0.01Mn1.9903.99F0.01 has a slightly smaller particle size and a more regular morphology structure with narrow size distribution. The charge-discharge test reveals that the initial capacities of LiMn2O4, LiLa0.01Mn1.99O4, and LiLa0.01Mn1.99O3.99F0.01 are 130, 123, and 126 mAh·g^-1, respectively, and the capacity retention rates of the initial value, after 50 cycles, are 84.8%, 92.3%, and 92.1%, respectively. The electrode coulomb efficiency and CV reveal that the electrode synthesized by the ultrasonic-assisted sol-gel (UASG) method has a better re- versibility than the electrode synthesized by the sol-gel method.
文摘Several series of LiRE x Mn 2-x O 4(RE=Ce, Nd) samples prepared at different contents and in different rare earth metals substitution were studied in order to further understand the dependence of the electrochemical performance on the doping rare earth metals. These cathodes were more tolerant to repeat lithium extraction and insertion than a standard LiMn 2O 4 spinel electrode in spite of a small reduction in the initial capacity. X ray photoelectron spectroscopy results show that the Mn 4+ contents for spinel LiMn 2O 4 directly affected the initial capacity and cyclability of LiMn 2O 4.
文摘Three kinds of processes, high temperature solid state reaction, precipitation and solgel technique were used to synthsize spinel phase LiMn2O4. XRD, DTATG results show that phasepure spinel LiMn2O4 could be synthesized under the lowest calcined temperature by the solgel technique compared to the precipitation method and solid state reaction. BET, SEM and electrochemical measurements results demonstrate that the features of the powders affect directly the electrochemical capacities; large specific area and small homogeneous grain size are of advantage for the lithium ion insertion and extraction in the charge and discharge process.
基金supported by the Key Project of the National Natural Science Foundation of China(Grant No.21233004)
文摘The effects of methylene methanedisulfonate(MMDS) on the high-temperature(0℃) cycle performance of LiMnO/graphite cells are investigated.By addition of 2 wt%MMDS into a routine electrolyte,the high-temperature cycling performance of LiMn204/graphite cells can be significantly improved.The analysis of differential capacity curves and energy-dispersive X-ray spectrometry(EDX) indicates that MMDS decomposed on both cathode and anode.The three-electrode system of pouch cell is used to reveal the capacity loss mechanism in the cells.It is shown that the capacity fading of cells without MMDS in the electrolytes is due to irreversible lithium consumption during cycling and irreversible damage of LiMnOmaterial,while the capacity fading of cell with 2 wt%MMDS in electrolytes mainly originated from irreversible lithium consumption during cycling.
基金Founded by Hunan Provincial Natural Science Foundation of Chi-na (No.04JJ40038) ,and Foundation of Hunan Provincial EducationDepartment (No.04C475)
文摘LiMn2O4 thin films were prepared by solution deposition using lithium acetate and manganese acetate us raw materials. The phase constitution and surface morphalogy were observed by X-ray diffraction and scanning electron microscopy. The electrochemical properties of the thin films were studied by cycilc voltammetry, charge- discharge experiments and impedance spectroscopy in 1 mol· L^-1 LiPF6 / EC- DMC solution using lithium metal as both the counter and reference electrodes. The films prepared by this method are of spinel phase. The lattice parameter increases with the annealing temperature aud annealing time. The film annealed at 750 ℃ for 30 minutes has the highest capacity of 34.5 μAh ·cm^- 2·μm^-1 , and its capacity loss per cycle is 0. 05% afrer being cycled 100 times.
基金Project(2007BA201055)supported by the National Science and Technology Support Program,China
文摘In order to improve the cycle and rate performance of LiNi0.5Mn1.5O4, LiCr2 Ni0.5 Mn1.5 O (0≤Y≤0.15) particles were Y -Y -Y 4 synthesized by the sucrose-aided combustion method. The effects of Cr doping in LiNi0.5Mn1.5O4 on the structures and electrochemical properties were investigated. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge test and electrochemical impedance spectrum (EIS). The results indicate that the LiCr2 Ni0.5 Mn1.5 O possess a spinel structure and small particle size, and LiCr0.2Ni0.4Mn1.4O4exhibits Y -Y -Y 4 the best cyclic and rate performance. It can deliver discharge capacities of 143 and 104 mA·h/g at 1C and 10C, respectively, with good capacity retention of 96.5% at 1C after 50 cycles.
基金Funded by the Scientific Research Fund of Hunan Provincial Education Department (No.07B060)
文摘LiMn2O4 thin films of different thickness were derived from solution deposition and heat treated by rapid thermal annealing. The phase identification and surface morphology were studied by X-ray diffraction and scanning electron microscopy. The electrochemical properties of the films were examined by galvanostatic charge-discharge experiments and electrochemical impedance spectroscopy. LiMn2O4 thin films of different thickness derived from solution deposition and rapid thermal annealing are homogeneous and crack free with the grain size between 20 nm and 50 nm. The specific capacity of these films is between 42 and 47 μAh· cm^2· μm^-1. The capacity decreases with the increase of discharge current density. The capacity loss per cycle increases from 0.012% to 0.16% after being cycled 50 times as the film thickness increases from 0.18 μm to 1.04 μm. The lithium diffusion coefficients of these films are in the same order of 10-11 cm^2· s^-1.
基金Supported by the Special Funds for Major State Basic Research Project of China(No.2009CB220104)the Program for Changjiang Scholar and Innovative Research Team in Universities of China(No.IRT0625)+1 种基金Jilin Project of Research and Deve- lopment, China (No.20075007) the Doctor Subject Foundation of China(No.20070183003)
文摘Li0.33MnO2 cathode material was synthesized by solid state reaction. The material showed a small coherent domain size about 10 nm determined by X-ray diffraction and transmission electron microscopy. The electrochemical properties of the material were studied in different potential windows of 3.5-2.0 V and 4.3-2.0 V. An irreversible transformation to spinel phase was observed in the initial several cycles, which was more prominent on cycling at 4.3-2.0 V. Electrochemical impedance spectroscopy showed that the Li^+ diffusion coefficient of the material was about 2× 10^-9 cm^2/s. Li0.33MnO2 showed a reversible discharge capacity of 140 and 200 mA·h/g in the potential windows of 3.5-2.0 V and 4.3-2.0 V, respectively. But the capacity retention at 4.3-2.0 V was poor due to the thicker spinel layer formed on the material surface.
文摘The differential thermal analysis (DTA) curves were measured at different heating rates in flowing air for studying the synthesis of the spinel LiMn2O3 with Li2CO3 and MnO2, The reaction began at about 503K, and finished at about 873K. The apparent activation energy of Kissinger method was about 122.77kJ.mol^-1, the reaction orderwas 1.67, the frequency factor was 7.81×10^9, and therefore the dinetic epuation was dδ/dt=A·exp(- E/RT)·(1-δ)^n=7.81×10^9, exp(-122770/RT)·(l-δ)^1.67 . Coats-Redfem integral method was used to analyze the DTA curves of the samples at different heating rates, and the calculated apparent activation energy and frequency factor were 112. 13kJ· mol^-1 and 1.18 × 10^9, respectively, rather close to that of Kissinger method. X-ray diffraction (XRD) and scanning electron microscope (SEM) results shown that the synthesized LiMn2O3 possesses pure phase, regular shape and normal particle distribution.
基金the National Key R&D Program of China(No.2018YFB0905400)the Fundamental Research Funds for the Central Universities(No.JZ2019HGBZ0140)+2 种基金the National Natural Science Foundation of China(No.U1630106No.51577175)China Postdoctoral Science Foundation(No.172731)。
文摘In this work the surface of LiNi0.5Mn1.5O4(LMN)particles is modified by Mn3O4 coating through a simple wet grinding method,the electronic conductivity is significantly improved from 1.53×10^-7 S/cm to 3.15×10^-5 S/cm after 2.6 wt%Mn3O4 coating.The electrochemical test results indicate that Mn3O4 coating dramatically enhances both rate performance and cycling capability(at 55℃)of LNM.Among the samples,2.6 wt%Mn3O4-coated LNM not only exhibits excellent rate capability(a large capacity of 108 m Ah/g at 10 C rate)but also shows 78%capacity retention at 55 ℃ and 1 C rate after 100 cycles.
基金the financial supports from the Key-Area Research and Development Program of Guangdong Province(2020B090919001)Shenzhen Key Laboratory of Solid-State Batteries(ZDSYS20180208184346531)+1 种基金Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(2018B030322001)Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices(2019B121205001)。
文摘Gas generation induced by parasitic reactions in lithium-metal batteries(LMB)has been regarded as one of the fundamental barriers to the reversibility of this battery chemistry,which occurs via the complex interplays among electrolytes,cathode,anode,and the decomposition species that travel across the cell.In this work,a novel in situ differential electrochemical mass spectrometry is constructed to differentiate the speciation and source of each gas product generated either during cycling or during storage in the presence of cathode chemistries of varying structure and nickel contents.It unambiguously excludes the trace moisture in electrolyte as the major source of hydrogen and convincingly identifies the layer-structured NCM cathode material as the source of instability that releases active oxygen from the lattice at high voltages when NCM experiences H2→H3 phase transition,which in turn reacts with carbonate solvents,producing both CO_(2)and proton at the cathode side.Such proton in solvated state travels across the cell and becomes the main source for hydrogen generated at the anode side.Mechanisms are proposed to account for these irreversible reactions,and two electrolyte additives based on phosphate structure are adopted to mitigate the gas generation based on the understanding of the above decomposition chemistries.
基金theNationalNaturalScienceFoundationofChi na (No .5 9972 0 2 7)theNaturalScienceFoundationofHubeiProvince (No .2 0 0 2AB0 74) )
文摘MnO 2 was prepared by column method from normal spinel LiMn 2O 4 with purity of 99.38%.The influence of LiMn 2O 4 grain size and acidity of leaching solution on the lithium leaching process was studied.The results show that the appropriate range of LiMn 2O 4 grain size was 60-160 meshes and the concentration of leaching solution HCl was 0.1 mol·L -1.The adsorption capacity Q of λ-MnO 2 for lithium increased with the increase of pH and changed markedly at pH 6.0-10.0.It was 3.80mmol/g at pH 12.0.The distribution coefficients K d of Li + and Na + were 3.406×10 4 and 2.300 respectively,and the separation coefficient α Li Na was 1.481×10 4 at pH 6.5.As a result,λ-MnO 2 is a high performance ion-sieve material for lithium ion.
基金supported by National Natural Science Foundation of China for Youth(Grant No.21901153)the Shanghai Municipal Science and Technology Commission(Grant No.14DZ2261200,15DZ2260300)111 project(D16002)and Shanghai Municipal Education Commission under Project of Shanghai Teachers Incentive plan.
文摘3D porous nano-LiMn2O4(nano-LMO)is successfully prepared at 250℃ by a low temperature pyrolysis,using porous MnO2 and lithium acetate as reactants.The as-formed porous samples are demonstrated to be constructed by well-defined and uniform cubic nanocrystals with particle sizes regulated from tens to hundreds of nanometers by adjusting the annealing temperature.Due to its proper particle size with perfect crystallization(-50 nm)and rich pores,sample LMO-265,prepared at 265℃,exhibits high performance as an aqueous lithium ion cathode.It can present a high specific capacity of 102 mAh g1 at a current density of 5℃ with a greatly improved rate capability(57.3%,68C)and capacity retention(70.7%,after 5000 cycles at 13.5C)in 1 M Li_(2)SO_(4).When assembled with commercial used active carbon(AC)to form an aqueous hybrid capacitor,it can deliver a high energy density of 15.8 Wh kg1 at a large power density of 9 kW kg1 with a good cycling life of 71.6%after 5000 at 2 Ag^(-1).Considering of its simple and economical preparation,as-prepared porous LMO can be regarded as a promising high-performance cathode material in aqueous electrolyte.