Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galva...Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+.展开更多
Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5...Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5SiO4 was studied. The final sample was identified as Li2Fe0.5Mn0.5SiO4 with a Pmn21 monoclinic structure by X-ray diffraction analysis. The crystal phases components and crystal phase structure of the Li2Fe0.5Mn0.4SiO4 material were improved as the increase of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+). Field-emission scanning electron microscopy verified that the Li2Fe0.5Mn0.5SiO4 particles are agglomerates of Li2Fe0.5Mn0.5SiO4 primary particles with a geometric mean diameter of 220 nm. The Li2Fe0.5Mn0.5SiO4 sample was used as an electrode material for rechargeable lithium ion batteries, and the electrochemical measurements were carried out at room temperature. The Li2Fe0.5Mn0.5SiO4 electrode delivered a first discharge capacity of 230.1 mAh/g at the current density of 10 mA/g in first cycle and about 162 mAh/g after 20 cycles at the current density of 20 mA/g.展开更多
Li2MnSiO4 with different crystal structure was synthesized by solid state reaction method. Their crystal structure and electrochemical properties have been characterized by X-ray diffraction and charge-discharge test....Li2MnSiO4 with different crystal structure was synthesized by solid state reaction method. Their crystal structure and electrochemical properties have been characterized by X-ray diffraction and charge-discharge test. The material prepared at 900oC in N2 atmosphere had γ-phase and its crystal structure changed to β-phase by post-heating at 400oC in air after 900oC sintering. In electrochemical measurement, two materials (γ- and β-phase) showed ~3 and ~45mAh/g, respectively. The different capacities of these two materials might be due to the change of crystal structure.展开更多
Li2SiO3 was synthesized by combination of sol-gel method and calcination at high temperature using Li2CO3, HNO3, Si(OC2H5)4 and C2H5OH as starting materials. The effects of calcination temperature and refluxing syst...Li2SiO3 was synthesized by combination of sol-gel method and calcination at high temperature using Li2CO3, HNO3, Si(OC2H5)4 and C2H5OH as starting materials. The effects of calcination temperature and refluxing system on the composition and properties of lithium silicate were investigated. The samples were characterized by TGA/DTA, XRD, SEM and particle size analysis. Li2FeSiO4 was prepared by the solid-state reaction between Li2SiO3 and FeC2O4·2H2O. The XRD patterns show that the use of refluxing system in the sol-gel preparation can decrease the Li2Si2O5 and Li4SiO4 impurities in the Li2SiO3 sample. The calcination temperature plays an important role in the properties of the Li2SiO3 samples. The sample calcined at 700 °C has high purity of 97% Li2SiO3 and good morphology as precursor of Li2FeSiO4. It consists of primary particles with size of 1-3 μm, and the primary particle clusters form agglomerates with loose and porous appearance.展开更多
基金Project (20771100) supported by the National Natural Science Foundation of China
文摘Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+.
基金Projects(13A047,10B054)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2011GK2002,2011FJ3160)supported by the Planned Science and Technology Project of Hunan Province,China
文摘Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5SiO4 was studied. The final sample was identified as Li2Fe0.5Mn0.5SiO4 with a Pmn21 monoclinic structure by X-ray diffraction analysis. The crystal phases components and crystal phase structure of the Li2Fe0.5Mn0.4SiO4 material were improved as the increase of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+). Field-emission scanning electron microscopy verified that the Li2Fe0.5Mn0.5SiO4 particles are agglomerates of Li2Fe0.5Mn0.5SiO4 primary particles with a geometric mean diameter of 220 nm. The Li2Fe0.5Mn0.5SiO4 sample was used as an electrode material for rechargeable lithium ion batteries, and the electrochemical measurements were carried out at room temperature. The Li2Fe0.5Mn0.5SiO4 electrode delivered a first discharge capacity of 230.1 mAh/g at the current density of 10 mA/g in first cycle and about 162 mAh/g after 20 cycles at the current density of 20 mA/g.
文摘Li2MnSiO4 with different crystal structure was synthesized by solid state reaction method. Their crystal structure and electrochemical properties have been characterized by X-ray diffraction and charge-discharge test. The material prepared at 900oC in N2 atmosphere had γ-phase and its crystal structure changed to β-phase by post-heating at 400oC in air after 900oC sintering. In electrochemical measurement, two materials (γ- and β-phase) showed ~3 and ~45mAh/g, respectively. The different capacities of these two materials might be due to the change of crystal structure.
基金Foundation item: Project (2007CB613607) support by the National Basic Research Program of ChinaProject (2010QZZD0101) supported by the Basic Research Foundation for the Chinese Central Universities
文摘Li2SiO3 was synthesized by combination of sol-gel method and calcination at high temperature using Li2CO3, HNO3, Si(OC2H5)4 and C2H5OH as starting materials. The effects of calcination temperature and refluxing system on the composition and properties of lithium silicate were investigated. The samples were characterized by TGA/DTA, XRD, SEM and particle size analysis. Li2FeSiO4 was prepared by the solid-state reaction between Li2SiO3 and FeC2O4·2H2O. The XRD patterns show that the use of refluxing system in the sol-gel preparation can decrease the Li2Si2O5 and Li4SiO4 impurities in the Li2SiO3 sample. The calcination temperature plays an important role in the properties of the Li2SiO3 samples. The sample calcined at 700 °C has high purity of 97% Li2SiO3 and good morphology as precursor of Li2FeSiO4. It consists of primary particles with size of 1-3 μm, and the primary particle clusters form agglomerates with loose and porous appearance.