A few classes of organic compounds are promising electrode-active materials due to their high power and energy densities,low cost,environmental friendliness,and functionality.In the present work,the possibility of usi...A few classes of organic compounds are promising electrode-active materials due to their high power and energy densities,low cost,environmental friendliness,and functionality.In the present work,the possibility of using Klason lignin extracted from buckwheat husks as a cathode-active material for a primary lithium battery has been investigated for the first time.The reaction mechanism in the lithium/lignin electrochemical cell was suggested based on the deep galvanostatic discharge(up to 0.005 V) data and cyclic voltammetry results.The dependence of the electrochemical behavior of the Klason lignin on the milling degree was evaluated.The maximum specific capacity of the lignin is equal to 600 m Ah g-1at a discharge current density of 75 μA cm-2.Beneficial effect of the thermal treatment of the Klason lignin cathode at250°C on the cell performance was established.It was found that the discharge capacity of the cell increased by 30% in the range from 3.3 to0.9 V for the treated cathode material.These results demonstrate the prospects of using Klason lignin-based electrochemical cells as low-rate primary power sources.展开更多
Forming an ultrathin conducting layer on a fluorinated carbon(CFx)surface for reducing severe electrochemical polarization in lithium/fluorinated carbon primary batteries(Li/CF_(x))remains a considerable challenge for...Forming an ultrathin conducting layer on a fluorinated carbon(CFx)surface for reducing severe electrochemical polarization in lithium/fluorinated carbon primary batteries(Li/CF_(x))remains a considerable challenge for achieving batteries with excellent rate capability.Herein,CFxwas modified by using acetylene/argon mixture plasma combined with MnO_(2)particles.The CF_(x)/C/MnO_(2)composite effectively reduced the voltage hysteresis and improved the electrochemical performance of Li/CF_(x).The excellent rate performance of CF_(x)/C/MnO_(2)was due to the high electrochemical activity provided by the atomicscale conductive carbon layer and ultrafine MnO_(2)particles.Compared with pristine CF_(x),the charge transfer resistance of the optimized CF_(x)/C/MnO_(2)decreased from 218.5 to 48.2Ω,the discharge rate increased from 2C to 10C,and the power density increased from 3.11 to 13.44 kW·g^(-1),The intrinsic reason for the enhanced rate performance was attributed to the fact that the ultrathin carbon layer acted as a conductive bridge to reduce the voltage hysteresis at the initial stage of the Li/CF_(x)discharge,and the high electrochemical activity of the ultrafine MnO_(2)particles provided a faster lithium-ion diffusion rate.展开更多
The enhancement of the fluorination degree of carbon fluorides(CF_(x))compounds is the most effective method to improve the energy densities of Li/CF_(x)batteries because the specific capacity of CF_(x)is proportional...The enhancement of the fluorination degree of carbon fluorides(CF_(x))compounds is the most effective method to improve the energy densities of Li/CF_(x)batteries because the specific capacity of CF_(x)is proportional to the molar ratio of F to C atoms(F/C).In this study,B-doped graphene(BG)is prepared by using boric acid as the doping source and then the prepared BG is utilized as the starting material for the preparation of CF_(x).The B-doping enhances the F/C ratio of CF_(x)without hindering the electrochemical activity of the C–F bond.During the fluorination process,B-containing functional groups are removed from the graphene lattice.This facilitates the formation of a defect-rich graphene matrix,which not only enhances the F/C ratio due to abundant perfluorinated groups at the defective edges but also serves as the active site for extra Li+storage.The prepared CF_(x)exhibits the maximum specific capacity of 1204 mAh g^(−1),which is 39.2%higher than that of CF_(x)obtained directly from graphene oxide(without B-doping).An unprecedented energy density of 2974 Wh kg^(−1)is achieved for the asprepared CF_(x)samples,which is significantly higher than the theoretically calculated energy density of commercially available fluorinated graphite(2180 Wh kg^(−1)).Therefore,this study demonstrates a great potential of B-doping to realize the ultrahigh energy density of CF_(x)cathodes for practical applications.展开更多
基金supported by the Russian Foundation for Basic Research (14-29-04072)supported by a research grant from the President of the Russian Federation for young scientists and graduate students (CP-2593.2013.1)
文摘A few classes of organic compounds are promising electrode-active materials due to their high power and energy densities,low cost,environmental friendliness,and functionality.In the present work,the possibility of using Klason lignin extracted from buckwheat husks as a cathode-active material for a primary lithium battery has been investigated for the first time.The reaction mechanism in the lithium/lignin electrochemical cell was suggested based on the deep galvanostatic discharge(up to 0.005 V) data and cyclic voltammetry results.The dependence of the electrochemical behavior of the Klason lignin on the milling degree was evaluated.The maximum specific capacity of the lignin is equal to 600 m Ah g-1at a discharge current density of 75 μA cm-2.Beneficial effect of the thermal treatment of the Klason lignin cathode at250°C on the cell performance was established.It was found that the discharge capacity of the cell increased by 30% in the range from 3.3 to0.9 V for the treated cathode material.These results demonstrate the prospects of using Klason lignin-based electrochemical cells as low-rate primary power sources.
基金financially supported by the National Natural Science Foundation of China(No.51972045)the Fundamental Research Funds for the Chinese Central Universities,China(No.ZYGX2019J025)。
文摘Forming an ultrathin conducting layer on a fluorinated carbon(CFx)surface for reducing severe electrochemical polarization in lithium/fluorinated carbon primary batteries(Li/CF_(x))remains a considerable challenge for achieving batteries with excellent rate capability.Herein,CFxwas modified by using acetylene/argon mixture plasma combined with MnO_(2)particles.The CF_(x)/C/MnO_(2)composite effectively reduced the voltage hysteresis and improved the electrochemical performance of Li/CF_(x).The excellent rate performance of CF_(x)/C/MnO_(2)was due to the high electrochemical activity provided by the atomicscale conductive carbon layer and ultrafine MnO_(2)particles.Compared with pristine CF_(x),the charge transfer resistance of the optimized CF_(x)/C/MnO_(2)decreased from 218.5 to 48.2Ω,the discharge rate increased from 2C to 10C,and the power density increased from 3.11 to 13.44 kW·g^(-1),The intrinsic reason for the enhanced rate performance was attributed to the fact that the ultrathin carbon layer acted as a conductive bridge to reduce the voltage hysteresis at the initial stage of the Li/CF_(x)discharge,and the high electrochemical activity of the ultrafine MnO_(2)particles provided a faster lithium-ion diffusion rate.
基金financialy supported by the State Key Program of National Natural Science Foundation of China(no.52130303)the National Natural Science Foundation of China(no.51773147 and 51973151)
文摘The enhancement of the fluorination degree of carbon fluorides(CF_(x))compounds is the most effective method to improve the energy densities of Li/CF_(x)batteries because the specific capacity of CF_(x)is proportional to the molar ratio of F to C atoms(F/C).In this study,B-doped graphene(BG)is prepared by using boric acid as the doping source and then the prepared BG is utilized as the starting material for the preparation of CF_(x).The B-doping enhances the F/C ratio of CF_(x)without hindering the electrochemical activity of the C–F bond.During the fluorination process,B-containing functional groups are removed from the graphene lattice.This facilitates the formation of a defect-rich graphene matrix,which not only enhances the F/C ratio due to abundant perfluorinated groups at the defective edges but also serves as the active site for extra Li+storage.The prepared CF_(x)exhibits the maximum specific capacity of 1204 mAh g^(−1),which is 39.2%higher than that of CF_(x)obtained directly from graphene oxide(without B-doping).An unprecedented energy density of 2974 Wh kg^(−1)is achieved for the asprepared CF_(x)samples,which is significantly higher than the theoretically calculated energy density of commercially available fluorinated graphite(2180 Wh kg^(−1)).Therefore,this study demonstrates a great potential of B-doping to realize the ultrahigh energy density of CF_(x)cathodes for practical applications.