期刊文献+
共找到905篇文章
< 1 2 46 >
每页显示 20 50 100
Effects of rare earth Ce addition on microstructure and mechanical properties of impure copper containing Pb 被引量:11
1
作者 Hai-hong LI Xiao LIU +5 位作者 Yang LI Shi-hong ZHANG Yan CHEN Song-wei WANG Jin-song LIU Jin-hu WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第6期1574-1581,共8页
The effects of rare earth Ce on the microstructure and mechanical properties of impure copper containing Pb were investigated using OM,SEM,EPMA,TEM and tensile testing.TEM and EDS analysis reveal that spherical CePb3 ... The effects of rare earth Ce on the microstructure and mechanical properties of impure copper containing Pb were investigated using OM,SEM,EPMA,TEM and tensile testing.TEM and EDS analysis reveal that spherical CePb3 particles form after Ce addition.CePb3 particles,with average size of^3.6μm,homogenously distribute in the Cu matrix.Due to small lattice misfit(~4.62%)with Cu matrix,CePb3 particles can act as effective nucleation sites beneficial to the grain refinement.Pb at grain boundaries seriously deteriorates the mechanical properties of Cu.The tensile strength and the elongation of Cu-0.1 Pb are decreased by 43.1%and 56.7%compared with those of pure copper,respectively.Ce can purify grain boundaries,cause the precipitation of CePb3 particles and refine grain sizes,which contribute to significant improvement of the mechanical properties of Cu.Compared with Cu-0.1Pb,the tensile strength(179 MPa)and the elongation(38.5%)of Cu-0.1Pb-0.3Ce are increased by 117.6%and 151.6%,respectively. 展开更多
关键词 Ce addition impure copper containing Pb CePb3 second phase particle lattice misfit grain refinement mechanical property
下载PDF
Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates 被引量:1
2
作者 Ali Alavi Nia Ali Shirazi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第7期799-809,共11页
Friction stir welding is a new and innovative welding method used to fuse materials. In this welding method, the heat generated by friction and plastic flow causes significant changes in the microstructure of the mate... Friction stir welding is a new and innovative welding method used to fuse materials. In this welding method, the heat generated by friction and plastic flow causes significant changes in the microstructure of the material, which leads to local changes in the mechanical properties of the weld. In this study, the effects of various welding parameters such as the rotational and traverse speeds of the tool on the microstructural and mechanical properties of copper plates were investigated; additionally, Charpy tests were performed on copper plates for the first time. Also, the effect of the number of welding passes on the aforementioned properties has not been investigated in previous studies. The results indicated that better welds with superior properties are produced when less heat is transferred to the workpiece during the welding process. It was also found that although the properties of the stir zone improved with an increasing number of weld passes, the properties of its weakest zone, the heat-affected zone, deteriorated. 展开更多
关键词 copper friction stir welding mechanical properties microstructure
下载PDF
Microstructural evolution and mechanical properties of friction stir-welded C71000 copper–nickel alloy and 304 austenitic stainless steel 被引量:6
3
作者 Hamed Jamshidi Aval 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第11期1294-1303,共10页
Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investiga... Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investigated the effects of tool rotational speed and linear speed on the microstructure and mechanical properties of friction stir-welded C71000 copper–nickel and 340 stainless steel alloys using a tungsten carbide tool with a cylindrical pin. The results indicated that a rotational-to-linear speed ratio of 12.5 r/mm did not cause any macro defects, whereas some tunneling defects and longitudinal cracks were found at other ratios that were lower and higher. Furthermore, chromium carbide was formed on the grain boundaries of the 304 stainless steel near the shoulder zone and inside the joint zone, directing carbon and chromium penetration toward the grain boundaries. Tensile strength and elongation percentages were 84% and 65% of the corresponding values in the copper–nickel base metal, respectively. 展开更多
关键词 dissimilar FRICTION STIR welding copper–nickel alloy AUSTENITIC STAINLESS steel microstructure mechanical properties
下载PDF
Effects of copper content on microstructure and mechanical properties of open-cell steel foams 被引量:2
4
作者 Hamid Sazegaran Milad Hojati 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第5期588-596,共9页
The effects of copper content on the microstructural and mechanical properties of steel foams are investigated. Spherical urea granules, used as a water-leachable space holder, were coated with a mixture of iron, ultr... The effects of copper content on the microstructural and mechanical properties of steel foams are investigated. Spherical urea granules, used as a water-leachable space holder, were coated with a mixture of iron, ultrafine carbon, and different amounts of copper powders. After the mixture was compacted and the space holder was removed by leaching, a sintering process was performed under an atmosphere of thermally dissociated ammonia. Microstructural evaluations of the cell walls were carried out using optical microscopy and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy. In addition, compression tests were conducted to investigate the mechanical properties of the manufactured steel foams. The results showed that the total porosity decreases from 77.2% to 71.9% with increasing copper content in the steel foams. In the foams' microstructure, copper islands are mostly distributed in pearlite and intergranular carbide phases are formed in the grain boundaries. When the copper content was increased from 0 to 4 wt%, the elastic modulus, plateau stress, fracture stress, and fracture strain of manufactured steel foams improved 4.5, 6, 6.4, and 2.5 times, respectively. 展开更多
关键词 STEEL foam leachable space HOLDER copper CONTENT LIQUID-PHASE sintering mechanical properties
下载PDF
Effect of vacuum on porosity and mechanical properties of high-pressure die-cast pure copper 被引量:1
5
作者 Hong-mei Yang Zhi-peng Guo +3 位作者 Hua-zhong Yang Zhi-hua Fu Zhou-meng Pu Shou-mei Xiong 《China Foundry》 SCIE 2019年第4期232-237,共6页
Pure copper tensile bars were produced by conventional die casting(HPDC) and vacuum-assist die casting(VADC) processes. Porosity and mechanical properties were investigated by using optical microscopy(OM), scanning el... Pure copper tensile bars were produced by conventional die casting(HPDC) and vacuum-assist die casting(VADC) processes. Porosity and mechanical properties were investigated by using optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), X-ray computed tomography(XCT) and tensile tester. Results show that porosities including gas porosity and shrinkage porosity could be observed in copper castings. Since the application of vacuum could reduce filling related gas entrapment and facilitate solidification due to the increased heat transfer between metal and die, both number and size of the entrapped gases, as well as shrinkage porosities were significantly reduced in vacuum-assist die castings of pure copper. The porosity fraction decreased from 2.243% to 0.875% compared with that of the conventional die casting. Besides, mechanical properties were improved significantly, i.e., by 15% for ultimate tensile strength and three times for elongation. 展开更多
关键词 VACUUM copper high pressure DIE CASTING (HPDC) mechanical properties POROSITY
下载PDF
Effect of tempering temperature on the mechanical properties and microstructure of an copper-bearing low carbon bainitic steel 被引量:6
6
作者 Aimin Guo Xinli Song +1 位作者 Jinquan Tang Zexi Yuan 《Journal of University of Science and Technology Beijing》 CSCD 2008年第1期38-42,共5页
The effect of tempering temperature on the microstructure and mechanical properties of ultra-high strength, copperbearing, low-carbon bainitic steel has been investigated in the experiment. The results showed that the... The effect of tempering temperature on the microstructure and mechanical properties of ultra-high strength, copperbearing, low-carbon bainitic steel has been investigated in the experiment. The results showed that the microstructure was mainly the laths of bainite in the as-quenched steel. The bainitic laths were restored and combined after the steel tempered at various tempera- tures. There were rnartensite/austenite (M/A) islands and numerous dislocations within and between the bainitic laths, while very t-me precipitates of ε-Cu were also observed within the laths. With increasing the tempered temperature from 400 to 600℃, the yield strength (YS) increased from 877 to 957 MPa, whereas the ultimate tensile strength (UTS) decreased from 1020 to 985 MPa. The Charpy V-notch (CVN) varied from 68.5 to 42 J, and the value was minimal for the steel tempered at 500℃. 2008 University of Science and Technology Beijing. All rights reserved. 展开更多
关键词 low carbon bainite copper-bearing steel PRECIPITATION mechanical properties
下载PDF
Effect of continuous induction annealing on the microstructure and mechanical properties of copper-clad aluminum flat bars 被引量:1
7
作者 Xin-hua Liu Yan-bin Jiang +1 位作者 Hong-jie Zhang Jian-xin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第12期1427-1436,共10页
Copper-clad aluminum (CCA) flat bars produced by the continuous casting-rolling process were subjected to continuous induction heating annealing (CIHA), and the effects of induction heating temperature and holding... Copper-clad aluminum (CCA) flat bars produced by the continuous casting-rolling process were subjected to continuous induction heating annealing (CIHA), and the effects of induction heating temperature and holding time on the microstructure, interface, and mechanical properties of the fiat bars were investigated. The results showed that complete recrystallization of the copper sheath occurred under CIHA at 460℃ for 5 s, 480℃ for 3 s, or 500℃ for 1 s and that the average grain size in the copper sheath was approximately 10.0 μm. In the case of specimens subjected to CIHA at 460-500℃ for longer than 1 s, complete recrystallization occurred in the aluminum core. In the case of CIHA at 460-500℃ for 1-5 s, a continuous interracial layer with a thickness of 2.5-5.5 μm formed and the thickness mainly increased with increasing annealing temperature. After CIHA, the interracial layer consisted primarily of a Cu9A14 layer and a CuA12 layer; the average interface shear strength of the CCA flat bars treated by CIHA at 460-500℃ for 1-5 s was 45-52 MPa. After full softening annealing, the hardness values of the copper sheath and the aluminum core were HV 65 and HV 24, respectively, and the hardness along the cross section of the CCA flat bar was uniform. 展开更多
关键词 metal cladding copper-clad aluminum ANNEALING interfaces mechanical properties
下载PDF
Inhomogeneity and anisotropy of microstructure and mechanical properties in severe plastic deformation processed pure copper 被引量:1
8
作者 康锋 王经涛 杜忠泽 《中国有色金属学会会刊:英文版》 CSCD 2006年第A02期160-165,共6页
关键词 纯铜 多相性 各向异性 大塑性变形加工 显微结构 力学性质
下载PDF
Effects of Varying Copper Content on the Microstructure and Mechanical Properties of FeCoNiCu_(x)
9
作者 YANG Yanru ZHANG Yichen +1 位作者 LI Jiawen ZHU Heguo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第5期986-991,共6页
Five sets of high entropy alloys(HEAs)FeCoNiCu_(x)(x=0.5,1.0,1.5,2.0,2.5)were produced by vacuum induction smelting.The effects of Cu content on the microstructure and mechanical properties of the alloys were interrog... Five sets of high entropy alloys(HEAs)FeCoNiCu_(x)(x=0.5,1.0,1.5,2.0,2.5)were produced by vacuum induction smelting.The effects of Cu content on the microstructure and mechanical properties of the alloys were interrogated by X-ray diffractometer(XRD),field scanning electron microscope(FESEM)and tensile mechanical test.The result shows that the HEAs form single FCC solid solution phase.With the increase of Cu content,the diffraction peak first deviated to the right and then shifted to the left.The alloys changed from equiaxed crystal structure to refined dendritic crystal structure,as Cu content increased.A large number of Cu atoms are isolated in the inter-crystalline region.The tensile mechanical tests show that with the increase of Cu content,the ultimate tensile strength first increased and then decreased.When x is 2.0,the ultimate tensile strength reaches a maximum of 473 MPa,the percent elongation is 43.0%,and the fracture presents ductile behaviour. 展开更多
关键词 FeCoNiCu alloy copper content microstructure elemental segregation mechanical properties
下载PDF
Effects of cold rolling path on recrystallization behavior and mechanical properties of pure copper during annealing
10
作者 Jing CHEN Wen-jie XU +8 位作者 Jia-hao YANG Zhi YANG Hong-li SHI Gao-yong LIN Zhu-min LI Xu SHEN Bo JIANG Hui-qun LIU Kai-xuan GUI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS 2024年第10期3233-3250,共18页
The recrystallization behavior,grain boundary characteristic distribution,and mechanical properties of pure Cu sheets that were subjected to different cold rolling paths,and then annealed at 400°C for 10,30,60,an... The recrystallization behavior,grain boundary characteristic distribution,and mechanical properties of pure Cu sheets that were subjected to different cold rolling paths,and then annealed at 400°C for 10,30,60,and 420 min,were investigated.Different rolling paths changed the grain boundary orientations of cold-rolled copper,causing recrystallized grains to nucleate and grow in an oriented manner.However,the evolution of the texture indicated that cold-rolled copper with different rolling paths did not show an obvious preferred orientation after annealing.The RD-60 specimen exhibited the smallest grain size(6.6μm).The results indicated that the grain size and low-ΣCSL grain boundaries worked together to provide RD-60 samples with appropriate mechanical properties and high plasticity.The yield strength,ultimate tensile strength,and elongation of RD-60 sample were 81 MPa,230 MPa,and 49%,respectively.These results could provide guidance for tuning the microstructures and properties of pure Cu foils,as well as designing fabrication routes for pure Cu foils through processes such as rolling and drawing. 展开更多
关键词 rolling path grain boundary characteristic distribution pure copper mechanical properties
下载PDF
Trade-offs between ion-conducting and mechanical properties: The case of polyacrylate electrolytes 被引量:2
11
作者 Guoli Lu Yaojian Zhang +7 位作者 Jianjun Zhang Xiaofan Du Zhaolin Lv Junzhe Du Zhiming Zhao Yue Tang Jingwen Zhao Guanglei Cui 《Carbon Energy》 SCIE CSCD 2023年第2期24-60,共37页
Polymer electrolytes(PEs)have been long recognized as the key materials to enable energy-dense batteries and render flexible energy devices practically viable,owing to their chemical and mechanical reliability.However... Polymer electrolytes(PEs)have been long recognized as the key materials to enable energy-dense batteries and render flexible energy devices practically viable,owing to their chemical and mechanical reliability.However,much of their promise is yet to be realized.The roomtemperature ion conductivity of existing PEs still falls short of the implementation criterion of 10^(-4) S cm^(-1) on the promise of acceptable mechanical properties,thereby precluding their practical application.The twin but inversely related duties of polymers,that is,functioning as both an ion-conducting medium and a structural backbone,underlie this issue but are less elucidated systematically.The polyacrylate(PA)family is among promising polymer matrices on account of ester polarity,electrode compatibility,chemical tunability,and mechanical durability.The extensive applicability of PA in plasticized gels,dry solids,and emerging composites makes PA-based PEs representative to illustrate the trade-off between ion conduction and mechanical strength.We herein seek to outline the stated long-standing conflict exemplified by PA-based PEs,focusing on crucial strategies toward balancing and reconciling the two mutually exclusive properties,with the intention of offering designing guidelines for next-generation PEs. 展开更多
关键词 ionic conductivity lithium batteries mechanical properties POLYACRYLATE polymer electrolytes trade-offs
下载PDF
Mechanical properties and tribological behavior of a cast heat-resisting copper based alloy 被引量:5
12
作者 张卫文 夏伟 +2 位作者 温利平 吴苑标 潘国如 《Journal of Central South University of Technology》 2002年第4期235-239,共5页
Mechanical properties and tribological behavior of a novel cast heat resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the ... Mechanical properties and tribological behavior of a novel cast heat resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the alloy. The results show that the alloy possesses better mechanical properties and tribological behaviors than that of C95500 at elevated temperature. The tensile strength, elongation and hardness at 500℃ are 470MPa, 2.5% and HB220, respectively. The wear rate of the developed alloy at ambient and elevated temperature is about one sixth and one fortieth of that of C95500, respectively. The alloy is very suitable for ma nufacturing heat resisting and wear resisting parts. Major strengthening mechanisms for the alloy are solution strengthening and the second phase strengthening. 展开更多
关键词 copper BASED ALLOY heat-resisting mechanical PROPERTY TRIBOLOGICAL behavior
下载PDF
Mechanical properties of electroformed copper layers with gradient microstructure 被引量:2
13
作者 Qiang Liao Li-qun Zhu Hui-cong Liu Wei-ping Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第1期69-74,共6页
The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a sc... The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit. 展开更多
关键词 ELECTROFORMING copper layer gradient rnicrostructure mechanical properties preferred orientation
下载PDF
Mechanical properties and microstructure evolution of solidified copper tailings with hydantoin epoxy resin 被引量:2
14
作者 Yong HE Wen-qiang JIANG +5 位作者 Ke-ping CHEN Lian-rong WU Ke-neng ZHANG Zhi-peng YU Xue-ping GAN De-shan FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第9期3065-3076,共12页
Based on the strength and microstructure tests,the effects of the hydantoin epoxy resin content and curing time on the mechanical properties and microstructure of copper tailings specimens were studied.The results sho... Based on the strength and microstructure tests,the effects of the hydantoin epoxy resin content and curing time on the mechanical properties and microstructure of copper tailings specimens were studied.The results showed that the strength of the solidified specimens was increased to 20.84 MPa with 30 wt.%addition of hydantoin epoxy resin.When the specimens with 10%hydantoin epoxy resin were cured for 7 and 14 d,the strengths were 6.33 and 6.67 MPa respectively,which met the requirements as foundation filler and building materials.The microscopic tests showed that the agglomeration was enhanced and the porosities of the solidified specimens were reduced with increase in the hydantoin epoxy resin content,which could greatly enhance the strength of solidified specimens. 展开更多
关键词 copper tailings hydantoin epoxy resin mechanical properties MICROSTRUCTURE
下载PDF
Thermostability,mechanical and tribological behaviors of polyimide matrix composites interpenetrated with foamed copper 被引量:2
15
作者 王立鹏 张涛 +3 位作者 张雷 吴集思 王艳 周科朝 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2336-2346,共11页
Polyimide matrix composites interpenetrated with foamed copper were prepared via pressure impregnation and vacuum immersion to focus on their thermostability, mechanical and tribological behaviors as sliding electrica... Polyimide matrix composites interpenetrated with foamed copper were prepared via pressure impregnation and vacuum immersion to focus on their thermostability, mechanical and tribological behaviors as sliding electrical contact materials. The results show that the interpenetrating phase composites(IPC) are very heat-resistant and exhibit higher hardness as well as bending strength, when compared with homologous polyimide matrix composites without foamed copper. Sliding electrical contact property of the materials is also remarkably improved, from the point of contact voltage drops. Moreover, it is believed that fatigue wear is the main mechanism involved, along with slight abrasive wear and oxidation wear. The better abrasive resistance of the IPC under different testing conditions was detected, which was mainly attributed to the successful hybrid of foamed copper and polyimide. 展开更多
关键词 foamed copper pressure impregnation thermostability mechanical properties tribological behaviors
下载PDF
Microstructure and mechanical properties of dissimilar Al-Cu joints by friction stir welding 被引量:9
16
作者 张秋征 宫文彪 刘威 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1779-1786,共8页
Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of... Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of 30 mm/min. Intercalation structure formed at the crown and Cu/weld nugget (WN) area promotes interracial diffusion and metallurgical bonding of aluminum and copper. However, corrosion morphology reveals the weak bonding mechanism of internal interface, which causes the joint failing across the interface with a brittle-ductile mixed fracture mode. The tensile strength of the joint is 148 MPa, which is higher than that of the aluminum matrix. Crystal defects and grain refinement by severely plastic deformation during friction stir welding facilitate short circuit diffusion and thus accelerate the formation of A14Cu9 and A12Cu intermetallic compounds (IMCs). XRD results show that A14Cu9 is mainly in Cu/WN transition zone. The high dislocation density and formation of dislocation loops are the major reasons of hardness increase in the WN. 展开更多
关键词 aluminum alloy copper friction stir welding dissimilar material microstructure mechanical properties
下载PDF
Microstructure and mechanical properties of AlSiCu10-10 filler meter brazing 6063 aluminum alloy 被引量:4
17
作者 Chen Yilan Qi Yuefeng Liu Xu 《China Welding》 EI CAS 2018年第4期52-56,共5页
AlSiCu_(10-10) flame brazing 6063 aluminum alloy was rearched,and microstructure and mechanical properties of brazed joints were tested in the experiments. The interfacial microstructures and brazing phases of brazed ... AlSiCu_(10-10) flame brazing 6063 aluminum alloy was rearched,and microstructure and mechanical properties of brazed joints were tested in the experiments. The interfacial microstructures and brazing phases of brazed joints were analyzed by scanning electron microscopy( SEM) and X-ray energy dispersive spectroscopy( EDS). The strength of brazed joints was aquired by tensile test. The results show that the AlCu_2 and Mg_2 Si phases were formed in the brazing seam,the former is the brittle phase,the Mg_2 Si phases is considered to be the strengthening phase of the aluminum alloy,which can reduce the brittleness caused by AlCu_2. The average tensile strength of brazed butt joint was 115 MPa,and the average shear strength of brazed joint was 26 MPa. Finally,the fracture form and fracture morphology of the brazed joint were analyzed. 展开更多
关键词 aluminum silicon copper BRAZING microstructure mechanical properties
下载PDF
Microstructure and properties of TP2 copper tube with La microalloying by horizontal continuous casting 被引量:2
18
作者 Jin-hu Wu Shi-hong Zhang +4 位作者 Yan Chen Hai-hong Li Hong-wu Song Ming Cheng Jin-song Liu 《China Foundry》 SCIE 2018年第1期31-36,共6页
The TP2 copper tube was prepared with La microalloying by horizontal continuous casting(HCC). The absorptivity of La and its effects on microstructure, tensile and corrosion properties of HCC TP2 copper tube were stud... The TP2 copper tube was prepared with La microalloying by horizontal continuous casting(HCC). The absorptivity of La and its effects on microstructure, tensile and corrosion properties of HCC TP2 copper tube were studied by means of the inductively coupled plasma optical emission spectrometer(ICP-OES), optical microscope(OM), scanning electron microscope(SEM) and potentiodynamic polarization measurements. The results show that the absorptivity of La in the HCC TP2 copper tube is about 15% under antivacuum conditions due to the good chemical activities of La. The impurity elements in copper tube such as O, S, Pb and Si can be significantly reduced, and the average columnar dendrite spacing of the copper tube can also be reduced from 2.21 mm to 0.93 mm by adding La. The ultimate tensile strength and the elongation with and without La addition are almost unchanged. However, the annual corrosion rate of the HCC TP2 copper tube is reduced from 10.18 mm·a^(-1) to 9.37 mm·a^(-1) by the purification effect of trace La. 展开更多
关键词 rare earth microstructure mechanical properties corrosion resistance HCC TP2 copper tube
下载PDF
Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured 2050 Al–Li Alloy Wall Deposits 被引量:12
19
作者 Hao Zhong Bojin Qi +2 位作者 Baoqiang Cong Zewu Qi Hongye Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期174-180,共7页
Aluminum–Lithium(Al–Li) alloy is a topic of great interest owing to its high strength and light weight, but there are only a few applications of Al–Li alloy in wire ss, a special AA2050 Al–Li alloy + arc additive ... Aluminum–Lithium(Al–Li) alloy is a topic of great interest owing to its high strength and light weight, but there are only a few applications of Al–Li alloy in wire ss, a special AA2050 Al–Li alloy + arc additive manufacturing(WAAM) process. To identify its feasibility in WAAM procewire was produced and employed in the production of straight-walled components, using a WAAM system based on variable polarity gas tungsten arc welding(VP-GTAW) process. The influence of post-deposited heat treatment on the microstructure and property of the deposit was investigated using optical micrographs(OM), scanning electron microscopy(SEM), X-ray diffraction(XRD), hardness and tensile properties tests. Results revealed that the microstructures of AA2050 aluminum deposits varied with their location layers. The upper layers consisted of fine equiaxed grains, while the bottom layer exhibited a coarse columnar structure. Mechanical properties witnessed a significant improvement after post-deposited heat treatment, with the average micro-hardness reaching 141 HV and the ultimate tensile strength exceeding 400 MPa. Fracture morphology exhibited a typical ductile fracture. 展开更多
关键词 Aluminum-copper-lithium alloy Wire arc additive manufacturing Heat treatment mechanical properties
下载PDF
Evolution of the texture and mechanical properties of 2060 alloy during bending 被引量:1
20
作者 Xiao Jin Bao-qin Fu +1 位作者 Cheng-lu Zhang Wei Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第9期966-971,共6页
In this study, we examined the evolution of the texture and mechanical properties of 2060 (T8) alloy during bending. A pixel rotation method (PRM) was proposed and used to characterize the textural evolution durin... In this study, we examined the evolution of the texture and mechanical properties of 2060 (T8) alloy during bending. A pixel rotation method (PRM) was proposed and used to characterize the textural evolution during bending determined by electron backscatter diffraction. The results showed that the textural components changed insignificantly, with the exception of a decrease in the cube texture. The tensile and yielding properties of the alloy were evaluated at three different orientations with respect to the rolling direction. The mechanical strength was found to increase in three directions with decreasing bending radius; thus, it was concluded that the 2060 (T8) alloy sheet satisfies the usage requirement after bending deformation. 展开更多
关键词 aluminum-lithium alloys BENDING TEXTURE mechanical properties
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部