Lithology classification using well logs plays a key role in reservoir exploration.This paper studies the problem of lithology identification based on the set-valued method(SV),which uses the SV model to establish the...Lithology classification using well logs plays a key role in reservoir exploration.This paper studies the problem of lithology identification based on the set-valued method(SV),which uses the SV model to establish the relation between logging data and lithologic types at a certain depth point.In particular,the system model is built on the assumption that the noise between logging data and lithologic types is normally distributed,and then the system parameters are estimated by SV method based on the existing identification criteria.The logging data of Shengli Oilfield in Jiyang Depression are used to verify the effectiveness of SV method.The results indicate that the SV model classifies lithology more accurately than the Logistic Regression model(LR)and more stably than uninterpretable models on imbalanced dataset.Specifically,the Macro-F1 of the SV models(i.e.,SV(3),SV(5),and SV(7))are higher than 85%,where the sandstone samples account for only 22%.In addition,the SV(7)lithology identification system achieves the best stability,which is of great practical significance to reservoir exploration.展开更多
As such in any industrial raw material site characterization study, making a lithological evaluation for cement raw materials includes a description of physical characteristics as well as grain size and chemical compo...As such in any industrial raw material site characterization study, making a lithological evaluation for cement raw materials includes a description of physical characteristics as well as grain size and chemical composition. For providing the cement components in accordance with the specifications required, making the classification of the cement raw material pit is needed. To make this identification in a spatial system at a quarry stage, the supervised pattern recognition analysis has been performed. By using four discriminant analysis algorithms, lithological classifications at three levels, which are with limestone, marly-limestone (calcareous marl) and marl, have been made based on the main chemical components such as calcium oxide (CaO), alumina (Al2O3), silica (SiO2), and iron (Fe2O3). The results show that discriminant algorithms can be used as strong classifiers in cement quarry identification. It has also recorded that the conditional and mixed classifiers perform better than the conventional discriminant algorithms.展开更多
Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as ...Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as sandstone and mudstone to undertake separate porositydepth compaction modeling. However, using just two lithologies is an oversimplification that cannot represent the compaction history. In such schemes, the precision of the compaction recovery is inadequate. To improve the precision of compaction recovery, a depth compaction model has been proposed that involves both porosity and clay content. A clastic lithological compaction unit classification method, based on clay content, has been designed to identify lithological boundaries and establish sets of compaction units. Also, on the basis of the clastic compaction unit classification, two methods of compaction recovery that integrate well and seismic data are employed to extrapolate well-based compaction information outward along seismic lines and recover the paleo-topography of the clastic strata in the region. The examples presented here show that a better understanding of paleo-geomorphology can be gained by applying the proposed compaction recovery technology.展开更多
The Multilayer Perceptron Neural Network (MLPNN) induction technique has been successfully applied to a variety of machine learning tasks, including the extraction and classification of image features. However, not mu...The Multilayer Perceptron Neural Network (MLPNN) induction technique has been successfully applied to a variety of machine learning tasks, including the extraction and classification of image features. However, not much has been done in the application of MLPNN on images obtained by remote sensing. In this article, two automatic classification systems used in image feature extraction and classification from remote sensing data are presented. The first is a combination of two models: a MLPNN induction technique, integrated under ENVI (Environment for Visualizing Images) platform for classification, and a pre-processing model including dark subtraction for the calibration of the image, the Principal Components Analysis (PCA) for band selections and Independent Components Analysis (ICA) as blind source separator for feature extraction of the Landsat image. The second classification system is a MLPNN induction technique based on the Keras platform. In this case, there was no need for pre-processing model. Experimental results show the two classification systems to outperform other typical feature extraction and classification methods in terms of accuracy for some lithological classes including Granite1 class with the highest class accuracies of 96.69% and 92.69% for the first and second classification system respectively. Meanwhile, the two classification systems perform almost equally with the overall accuracies of 53.01% and 49.98% for the first and second models respectively </span><span style="font-family:Verdana;">though the keras model has the advantage of not integrating the pre-processing</span><span style="font-family:Verdana;"> model, hence increasing its efficiency. The application of these two systems to the study area resulted in the generation of an updated geological mapping with six lithological classes detected including the Gneiss, the Micaschist, the Schist and three versions of Granites (Granite1, Granite2 and Granite3).展开更多
基金supported in part by the National Key Research and Development Project of China under Grant Nos.2018AAA0100800 and 2018YFE0106800in part by the SINOPEC Programmes for Science and Technology Development(PE19008-8)+3 种基金in part by the National Natural Science Foundation of China under Grant Nos.61725304,61803370,and 61903353in part by the Major Science and Technology Project of Anhui Province(201903a07020012)in part by the University Synergy Innovation Program of Anhui Province(GXXT-2021-010)in part by the Fundamental Research Funds for the Central Universities(WK2100000013)。
文摘Lithology classification using well logs plays a key role in reservoir exploration.This paper studies the problem of lithology identification based on the set-valued method(SV),which uses the SV model to establish the relation between logging data and lithologic types at a certain depth point.In particular,the system model is built on the assumption that the noise between logging data and lithologic types is normally distributed,and then the system parameters are estimated by SV method based on the existing identification criteria.The logging data of Shengli Oilfield in Jiyang Depression are used to verify the effectiveness of SV method.The results indicate that the SV model classifies lithology more accurately than the Logistic Regression model(LR)and more stably than uninterpretable models on imbalanced dataset.Specifically,the Macro-F1 of the SV models(i.e.,SV(3),SV(5),and SV(7))are higher than 85%,where the sandstone samples account for only 22%.In addition,the SV(7)lithology identification system achieves the best stability,which is of great practical significance to reservoir exploration.
文摘As such in any industrial raw material site characterization study, making a lithological evaluation for cement raw materials includes a description of physical characteristics as well as grain size and chemical composition. For providing the cement components in accordance with the specifications required, making the classification of the cement raw material pit is needed. To make this identification in a spatial system at a quarry stage, the supervised pattern recognition analysis has been performed. By using four discriminant analysis algorithms, lithological classifications at three levels, which are with limestone, marly-limestone (calcareous marl) and marl, have been made based on the main chemical components such as calcium oxide (CaO), alumina (Al2O3), silica (SiO2), and iron (Fe2O3). The results show that discriminant algorithms can be used as strong classifiers in cement quarry identification. It has also recorded that the conditional and mixed classifiers perform better than the conventional discriminant algorithms.
文摘Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as sandstone and mudstone to undertake separate porositydepth compaction modeling. However, using just two lithologies is an oversimplification that cannot represent the compaction history. In such schemes, the precision of the compaction recovery is inadequate. To improve the precision of compaction recovery, a depth compaction model has been proposed that involves both porosity and clay content. A clastic lithological compaction unit classification method, based on clay content, has been designed to identify lithological boundaries and establish sets of compaction units. Also, on the basis of the clastic compaction unit classification, two methods of compaction recovery that integrate well and seismic data are employed to extrapolate well-based compaction information outward along seismic lines and recover the paleo-topography of the clastic strata in the region. The examples presented here show that a better understanding of paleo-geomorphology can be gained by applying the proposed compaction recovery technology.
文摘The Multilayer Perceptron Neural Network (MLPNN) induction technique has been successfully applied to a variety of machine learning tasks, including the extraction and classification of image features. However, not much has been done in the application of MLPNN on images obtained by remote sensing. In this article, two automatic classification systems used in image feature extraction and classification from remote sensing data are presented. The first is a combination of two models: a MLPNN induction technique, integrated under ENVI (Environment for Visualizing Images) platform for classification, and a pre-processing model including dark subtraction for the calibration of the image, the Principal Components Analysis (PCA) for band selections and Independent Components Analysis (ICA) as blind source separator for feature extraction of the Landsat image. The second classification system is a MLPNN induction technique based on the Keras platform. In this case, there was no need for pre-processing model. Experimental results show the two classification systems to outperform other typical feature extraction and classification methods in terms of accuracy for some lithological classes including Granite1 class with the highest class accuracies of 96.69% and 92.69% for the first and second classification system respectively. Meanwhile, the two classification systems perform almost equally with the overall accuracies of 53.01% and 49.98% for the first and second models respectively </span><span style="font-family:Verdana;">though the keras model has the advantage of not integrating the pre-processing</span><span style="font-family:Verdana;"> model, hence increasing its efficiency. The application of these two systems to the study area resulted in the generation of an updated geological mapping with six lithological classes detected including the Gneiss, the Micaschist, the Schist and three versions of Granites (Granite1, Granite2 and Granite3).