期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Novel Three-stage Tectonic Model for Mississippi Valleytype Zn-Pb Deposits in Orogenic Fold-and-Thrust Belts
1
作者 SONG Yucai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第4期843-849,共7页
Mississippi Valley-type(MVT) Zn-Pb deposits predominantly form within both orogenic forelands and fold-andthrust belts, yet the mineralization process within the latter tectonic setting remains inadequately understood... Mississippi Valley-type(MVT) Zn-Pb deposits predominantly form within both orogenic forelands and fold-andthrust belts, yet the mineralization process within the latter tectonic setting remains inadequately understood. This study, through a comprehensive review of MVT deposits across global fold-and-thrust belts, introduces a novel model elucidating the mineralization process in the context of tectonic belt evolution. It is demonstrated that during the stage Ⅰ, regional compression is introduced by early stages of plate convergence, causing the folding and thrusting and creating structural or lithological traps such as evaporite diapirs and unconformity-related carbonate dissolution-collapse structures. Thereafter, in stage Ⅱ, hydrocarbons begin to migrate and accumulate within these traps, where reduced sulfur is generated through thermochemical or bacterial sulfate reduction concurrent with or preceding Zn-Pb mineralization. In the subsequent stage Ⅲ, as plate convergence persists, the regional stress transitions from compression to transpression or extension. Under these conditions, steeply-dipping extensional faults are generated, facilitating the ascent of metalliferous brines into early-formed structural or lithological traps. Precipitation of Zn and Pb sulfides occurs through the mixing of Zn-Pb-transporting fluids with pre-existing reduced sulfur or by interaction with hydrocarbons. 展开更多
关键词 Mississippi Valley-type Zn-Pb deposits fold-and-thrust belts tectonic model structural or lithological traps extensional faults
下载PDF
Effect of a single weak lithological structure on the height of a collapsing roof in a deep soft rock roadway 被引量:2
2
作者 YANG Jun 《Mining Science and Technology》 EI CAS 2010年第6期820-824,共5页
Besides the cross sections of roadways and the tendency and obliquity of roadway axes, the major controlling factors affecting the height of a collapsing roof include the weak lithological structure of surrounding roc... Besides the cross sections of roadways and the tendency and obliquity of roadway axes, the major controlling factors affecting the height of a collapsing roof include the weak lithological structure of surrounding rocks. This thesis analyzes the effect of two single and weak lithological structures of both sides and the roof on the height of a collapsing roof in a deep soft rock road- way. Using the two-dimensional UDEC3.1 software, a numerical structures of both sides of a roadway and of two weak lithological simulation was carried out on the models of weak lithological structures of roof of different depths. We reconstruct the overall processes from a break-away layer, bending, subsidence and the cracking of a collapsing roof. We also illustrate the distribution characteristics of displacement fields in the surrounding rock after the roof collapse in a deep soft rock roadway. The results of our numerical simulations indicate that the form of a roof collapse is side-expanding when the roadway is a weak structure at both sides The height of the roof collapse is related to the lithological combination of the roof when the roadway is a weak structure of the roof. 展开更多
关键词 single and weak lithological structure height of roof collapse numerical simulation
下载PDF
Lithology, kinematics and geochronology related to Late Mesozoic basin-mountain evolution in the Nanxiong-Zhuguang area, South China 被引量:45
3
作者 SHU Liangshu1, DENG Ping1,2, WANG Bin1, TAN Zhengzhong2, YU Xinqi1 & SUN Yan1 1. Department of Earth Sciences, Nanjing University, Nanjing 210093, China 2. Research Institute No.290, CNNC, Shaoguan 512026, China 《Science China Earth Sciences》 SCIE EI CAS 2004年第8期673-688,共16页
The Nanxiong red-bed basin and its adjacent Zhuguang granite form a distinctive basin-mountain landform in the Nanling region, South China. Research results suggest that the Zhuguang granite is a polyphase composite p... The Nanxiong red-bed basin and its adjacent Zhuguang granite form a distinctive basin-mountain landform in the Nanling region, South China. Research results suggest that the Zhuguang granite is a polyphase composite pluton developed on the metamorphic basement of the paleo-Tethys-paleo-Asian tectonic regime and possesses geometrical and kinematic features of hot-doming extensional tectonics at the middle-upper crustal level, which is considered as a magmatic complex that resulted from the collision-orogeny during the Indosinian Period, the subduction-consuming during the Early Yanshanian Period and the intra-continental basaltic underplating and deep-seated geodynamics during the Late Yanshanian Period. The Nanxiong basin is a Late Cretaceous-Paleogene asymmetric faulted basin that is characterized by a fault boundary on the northern side and an uncomformable boundary on the southern side, its deposit center was migrated gradually from south to north. Structural kinematic results on the basin-mountain coupled zone demonstrate that the ductile and the brittle rheological layers show a quite coincident sense of shear, implying that it is a continuous process from the ductile extensional deformation followed by locally sinistral strike-slip shear at a middle-crustal level to the brittle tensional deformation at a upper-crustal level during formation of granitic doming extensional tectonics. The Zhuguang granite and the Nanxiong faulted basin constructed a semi-graben tectonic system. Lithological and geochemical results suggest that the Late Triassic to Jurassic granitic bodies in the Zhuguang have some similar features: high SiO2, Al2O3, K2O contents, alkalinity index > 2.8, ANKC value > 1.1, LREE-enriched pattern with high REE contents, marked negative Eu anomalies, enrichment in Rb and Th, depletion in Ba and Nb, showing a K-rich and Al-rich calc-alkaline affinity, which suggest a continuous magmatic evolution from Late Triassic to Jurassic. Formation of Nanxiong basin and evolution of basin-mountain system were controlled both by the Zhuguang granitic-doming and the regional extensional tectonics. Development of the olivine basalt in the basin suggests that tension action was very strong during lava eruption. The magma-type zircon grains of basalt from the Nanxiong basin yielded the SHRIMP age of 96±1Ma, providing reliable geochronological constraint on the tectono-thermal event and basin-mountain evolution in the Nanling region, South China. 展开更多
关键词 lithology structural kinematics basin-mountain evolution SHRIMP age Zhuguang granite Nanxiong basin.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部