期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effective elastic thickness of the lithosphere from joint inversion in western China and its implications 被引量:2
1
作者 Wen Shi Shi Chen Jiancheng Han 《Earthquake Science》 2020年第1期1-10,共10页
The western China lies in the convergence zone between Eurasian and Indian plates.It is an ideal place to study the lithosphere dynamics and tectonic evolutions on the continental Earth.The lithospheric strength is a ... The western China lies in the convergence zone between Eurasian and Indian plates.It is an ideal place to study the lithosphere dynamics and tectonic evolutions on the continental Earth.The lithospheric strength is a key factor in controlling the lithosphere dynamics and deformations.The effective elastic thickness(T_(e))of the lithosphere can be used to address the lithospheric strength.Previous researchers only used one of the admittance or coherence methods to investigate the T_(e) in the western China.Moreover,most of them ignored the internal loads of the lithosphere during the T_(e) calculation,which can produce large biases in the T_(e) estimations.To provide more reliable T_(e) estimations,we used a new joint inversion method that integrated both admittance and coherence techniques to compute the T_(e) in this study,with the WGM2012 gravity data,the ETOPO1 topographic data,and the Moho depths from the CRUST1.0 model.The internal loads are considered and investigated using the load ratio(F).Our results show that the joint inversion method can yield reliable T_(e) and F values.Based on the analysis of T_(e) and F distributions,we suggest(1)the northern Tibetan Plateau could be the front edge of the plate collision of Eurasian and Indian plates;(2)the southern and part of central Tibetan Plateau have a strong lithospheric mantle related to the rigid underthrusting Indian plate;(3)the southeastern Tibetan Plateau may be experiencing the delamination of lithosphere and upwelling of asthenosphere. 展开更多
关键词 effective elastic thickness joint inversion western China gravity anomaly lithospheric strength
下载PDF
Heat Flow Pattern in the Mainland of China and Its Geodynamic Significance 被引量:9
2
作者 WANG Yang WANG Jiyang XIONG Liangping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期375-380,共6页
On the basis of 723 heat flow measurements in the mainland of China and over 2000 data from the global heat flow data set, the authors compiled the heat flow map of the mainland of China and its adjacent areas to exhi... On the basis of 723 heat flow measurements in the mainland of China and over 2000 data from the global heat flow data set, the authors compiled the heat flow map of the mainland of China and its adjacent areas to exhibit the overall variation of the heat flow pattern in the mainland. The heat flow pattern of the mainland is complex, and can not be simply summarized as “low in the north and west and high in the south and east”. Significant difference exists between eastern and western China in the spatial pattern of heat flow. Divided by the 105°E meridian, heat flow values in eastern China show a westward-decreasing trend; and a northward variation is observed in western China. The high-heat flow regions correspond to tectonically active belts such as Cenozoic orogens and extensional basins, where mantle heat flow is high; and the low-heat flow regions correspond to stable units such as the Tarim and Yangtze platforms. This heat flow pattern is controlled by India-Asia collision in the west and Pacific plate subduction in the east. The lateral variation in lithospheric strength corresponds to the heat flow variation, and there is a generally reversely proportional relation between heat flow and lithospheric strength in the mainland of China. The mosaic pattern of present deformation in the mainland results from lateral rheological heterogeneity. The good coincidence between weak strength domains and seismic zones demonstrates the intrinsic relation between the strength heterogeneity and regional seismicity pattern in the mainland of China. 展开更多
关键词 China heat flow lithosphere strength HETEROGENEITY DEFORMATION SEISMICITY
下载PDF
Focal depth estimates of earthquakes in the Himalayan-Tibetan region from teleseismic waveform modeling 被引量:1
3
作者 Ling Bai Jeroen Ritsema Junmeng Zhao 《Earthquake Science》 CSCD 2012年第5期459-468,共10页
We estimate the focal depths and fault plane solutions of 46 moderate earthquakes in the Himalayan- Tibetan region by modeling the broadband waveforms of teleseismic P waves. The depths of 38 of these earth- quakes ra... We estimate the focal depths and fault plane solutions of 46 moderate earthquakes in the Himalayan- Tibetan region by modeling the broadband waveforms of teleseismic P waves. The depths of 38 of these earth- quakes range between 0-40 km, with a peak at -5 km. One earthquake is located within the lower crust of the Indian shield. The remaining eight earthquakes occurred between depths of 80 -120 km and are all located in the Pamir-Hindu Kush and the Indo-Myanmar deep seismic zones. None of the earthquakes outside these deep seismic zones are located in the mantle. Global centroid moment tensor (CMT) solutions indicate that most earthquakes in northern Tibet and northern India had thrust-faulting mechanisms and that normal and strike-slip faulting earthquakes occurred primarily in central Tibet. These mechanisms are consistent with the predominantly NNW-SSE compression in the direction of current Himalayan-Tibetan continental collision. 展开更多
关键词 continental collision zone Tibetan plateau focal depth strength of the continental lithosphere
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部