The present-day lithospheric stress state of the Qinghai-Tibetan Plateau and neighboring areas is controlled by both the lithosphere itself and the underlying mantle.In other words,the stress is affected by the gravit...The present-day lithospheric stress state of the Qinghai-Tibetan Plateau and neighboring areas is controlled by both the lithosphere itself and the underlying mantle.In other words,the stress is affected by the gravitational potential energy(GPE)difference caused by the change in the density distribution within the lithosphere and the drag force on the base of the lithosphere caused by mantle convection.The study of the lithospheric stress state plays an important role in further understanding the dynamic background and mechanism for the evolution of the Qinghai-Tibetan Plateau.In this study,the Crust1.0 crustal density model combined with the S40RTS mantle shear wave velocity variation model was used to calculate the GPE.The EGM2008gravity field model was used to calculate the drag force from mantle convection at the base of the lithosphere.The lithospheric and joint stress fields of the two sources were obtained by solving the force balance under the thin sheet approximation.This way,we could comprehensively analyze the characteristics of the stress state within the Plateau.Six regions were classified according to the GPE stress field,mantle drag force stress field,the relative magnitude of the two stress fields,and correlation between the two stress fields and surface deformation.The lithospheric stress fields of the Tarim Basin and other stable blocks are mainly controlled by the GPE difference.The lithospheric stress field in the collision zone between the Indian Plate and the QinghaiTibetan Plateau is predominantly controlled by the deep mantle drag force.The lithospheric stress field in the interior of the Plateau is controlled by both GPE and mantle drag.The correlation between the lithospheric stress field and surface deformation at the southeast margin of the Qinghai-Tibetan Plateau is poor.It is hypothesized that the presence of lower crustal flow with lower effective viscosity leads to crust-mantle decoupling,and the mantle drag force has a weaker influence on the shallow crust,resulting in the inconsistency between the average lithospheric stress field and surface deformation.展开更多
According to the feature of Hindukush-Pamirs intermediate focus earthquake belt with a S-shaped pattern of dip direction reversion by using the data of earthquake catalogues obtained by seismic networks in Xinjiang an...According to the feature of Hindukush-Pamirs intermediate focus earthquake belt with a S-shaped pattern of dip direction reversion by using the data of earthquake catalogues obtained by seismic networks in Xinjiang and Mid-Asia area of the former Soviet Union, by means of focal mechanism solution and tectonic stress analysis, it is considered that the intermediate focus earthquake belt is possibly formed by the compression rupture which is caused by the collision between Indian and European Plates in the lithosphere of the upper mantle. Under the action of torsion moment, the continuous torsional break of reverse part of the earthquake belt might be the reason why the intermediate focus strong earthquakes occur repeatedly in the same place. In this paper, the boundary line between the intermediate focus earthquake belt and the shallow focus earthquake region of the western part of south Tianshan is also defined from the angle of seismicity division.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42074092)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2016064)。
文摘The present-day lithospheric stress state of the Qinghai-Tibetan Plateau and neighboring areas is controlled by both the lithosphere itself and the underlying mantle.In other words,the stress is affected by the gravitational potential energy(GPE)difference caused by the change in the density distribution within the lithosphere and the drag force on the base of the lithosphere caused by mantle convection.The study of the lithospheric stress state plays an important role in further understanding the dynamic background and mechanism for the evolution of the Qinghai-Tibetan Plateau.In this study,the Crust1.0 crustal density model combined with the S40RTS mantle shear wave velocity variation model was used to calculate the GPE.The EGM2008gravity field model was used to calculate the drag force from mantle convection at the base of the lithosphere.The lithospheric and joint stress fields of the two sources were obtained by solving the force balance under the thin sheet approximation.This way,we could comprehensively analyze the characteristics of the stress state within the Plateau.Six regions were classified according to the GPE stress field,mantle drag force stress field,the relative magnitude of the two stress fields,and correlation between the two stress fields and surface deformation.The lithospheric stress fields of the Tarim Basin and other stable blocks are mainly controlled by the GPE difference.The lithospheric stress field in the collision zone between the Indian Plate and the QinghaiTibetan Plateau is predominantly controlled by the deep mantle drag force.The lithospheric stress field in the interior of the Plateau is controlled by both GPE and mantle drag.The correlation between the lithospheric stress field and surface deformation at the southeast margin of the Qinghai-Tibetan Plateau is poor.It is hypothesized that the presence of lower crustal flow with lower effective viscosity leads to crust-mantle decoupling,and the mantle drag force has a weaker influence on the shallow crust,resulting in the inconsistency between the average lithospheric stress field and surface deformation.
文摘According to the feature of Hindukush-Pamirs intermediate focus earthquake belt with a S-shaped pattern of dip direction reversion by using the data of earthquake catalogues obtained by seismic networks in Xinjiang and Mid-Asia area of the former Soviet Union, by means of focal mechanism solution and tectonic stress analysis, it is considered that the intermediate focus earthquake belt is possibly formed by the compression rupture which is caused by the collision between Indian and European Plates in the lithosphere of the upper mantle. Under the action of torsion moment, the continuous torsional break of reverse part of the earthquake belt might be the reason why the intermediate focus strong earthquakes occur repeatedly in the same place. In this paper, the boundary line between the intermediate focus earthquake belt and the shallow focus earthquake region of the western part of south Tianshan is also defined from the angle of seismicity division.