Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally.The fouling...Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally.The fouling was analyzed by scanning electron microscopy(SEM)and energy dispersive X-ray detector(EDX).The results show that the transfer of calcium and magnesium ions in heat-transfer-surface-water system is affected by zinc ions dissolved from the alloy because of primary battery reaction.Some calcium ions of calcium carbonate crystal are replaced by zinc ions,the growth of aragonite crystal nucleus is retarded,and the transition of calcium carbonate from aragonite to calcite is hampered.展开更多
A copper-zinc alloy doped with rare earth elements was prepared and the mechanism was demonstrated in a simulating boiler and circulating cooling water with rigidity 1 mmol·L-1. The polar curve and scale inhibiti...A copper-zinc alloy doped with rare earth elements was prepared and the mechanism was demonstrated in a simulating boiler and circulating cooling water with rigidity 1 mmol·L-1. The polar curve and scale inhibiting ability of the alloy was tested by a corrosion measurement system and a scale inhibition evaluation system, respectively. Scale samples were characterized with SEM and XRD. It is found that the transfer of cations could be promoted by doping with proper rare earth elements, and the corrosion potentials descend by 25~126 mV. The results indicated that the copper-zinc alloy doped with rare earth elements has higher scale inhibiting ability of CaCO3. The growth of calcite was affected by zinc ions dissolved because of primary battery reaction, and the transition of calcium carbonate from aragonite to calcite was hampered resulting in the proportion of aragonite to calcite is changed from 1.7∶1 to 2.7∶1.展开更多
AIM: To investigate the effects of superoxide dismutase (SOD) polymorphisms (rs4998557 , rs4880), Helicobacter pylori (H. pylori ) infection and environmental factors in gastric cancer (GC) and malignant potential of ...AIM: To investigate the effects of superoxide dismutase (SOD) polymorphisms (rs4998557 , rs4880), Helicobacter pylori (H. pylori ) infection and environmental factors in gastric cancer (GC) and malignant potential of gastric precancerous lesions (GPL). METHODS: Copper-zinc superoxide dismutase (SOD1, CuZn-SOD)-G7958A (rs4998557 ) and manganese superoxide dismutase (SOD2, Mn-SOD)-Val16Ala (rs4880 ) polymorphisms were genotyped by SNaPshot multiplex polymerase chain reaction (PCR) in 145 patients with GPL (87 cases of gastric ulcer, 33 cases of gastric polyps and 25 cases of atrophic gastritis), 140 patients with GC and 147 healthy controls. H. pylori infection was detected by immunoblotting analysis. RESULTS: The SOD1-7958A allele was associated with a higher risk of gastric cancer [odds ratio (OR) = 3.01, 95% confidence intervals (95% CI): 1.83-4.95]. SOD216Ala/Val genotype was a risk factor for malignant potential of GPL (OR = 2.04, 95% CI: 1.19-3.49). SOD216Ala/genotype increased the risk of gastric cancer (OR = 2.85, 95% CI: 1.66-4.89). SOD1-7958A/genotype, SOD2-16Ala/genotype, alcohol drinking, positive family history and type Ⅰ H. pylori infection were associated with risk of gastric cancer, and there were additive interactions between the two genotypes and the other three risk factors. SOD2-16Ala/Val genotype and positive family history were associated with malignant potential of GPL and jointly contributed to a higher risk for malignant potential of GPL (OR = 7.71, 95% CI: 2.10-28.22). SOD1-7958A/genotype and SOD2-16Ala/genotype jointly contributed to a higher risk for gastric cancer (OR = 6.43, 95% CI: 3.20-12.91). CONCLUSION: SOD1-7958A/and SOD2-16Ala/-genotypes increase the risk of gastric cancer in Chinese Han population. SOD2-16Ala/-genotype is associated with malignant potential of GPL.展开更多
Enzyme-based anticancer therapy is more attractive for the less side effect than conventional chemotherapy.However,the poor stability and low membrane permeability of enzymes during the intracellular delivery are cons...Enzyme-based anticancer therapy is more attractive for the less side effect than conventional chemotherapy.However,the poor stability and low membrane permeability of enzymes during the intracellular delivery are constraints for its practical applications.In this work,we synthesized novel near-infrared (NIR)-responsive core-shell-structured Prussian blue@fibrous SiO2 (PBFS) nanoparticles as the carrier of superoxide dismutase (SOD) and a glutathione (GSH)-activated Fenton reagent (DiFe).The PBFS nanoparticles are further modified with aGSH-responsive cationic polymer (poly(2-(acryloyloxy)-N,N-dimethyl-N-(4-(((2-((2-(((4-methyl-2-oxo-2H-chromen-7-yl)carbamoyl)oxy)ethyl)disulfaneyl)ethoxy)carbonyl)amino)benzyl)ethan-1-aminium,PSS) containing disulfide bonds and fluorophores.After SOD and DiFe are loaded on the PBFS-PSS nanoparticles,dual chemodynamic/photothermal therapeutic nanoparticulate systems (PBFS-PSS/DiFe/SOD) are obtained.In vitro experiments show that PBFS-PSS/DiFe/SOD nanoparticles have good biocompatibility and can be tracked under fluorescence microscope during the intracellular delivery process in MCF-7 tumor cells due to the GSH-activated release of fluorophores.They also exhibit high efficiency in NIR photothermal conversion and GSH-activated Fenton reaction in tumor cells,thus achieving high-efficient killing effect of tumor cells based on the combination of photothermal and chemodynamic therapeutic performance (PTT and CDT).This work offers a novel pathway to construct a visual multifunctional nanomedicine platform for future cancer therapy.展开更多
UP until now, all methods using NMR technique to study the coordinated structure of activecenter in metalloenzyme are to reconstitute the diamagnetic ions [i. e. Zn(Ⅱ), etc.] in metal-loenzyme or its paramagnetic ion...UP until now, all methods using NMR technique to study the coordinated structure of activecenter in metalloenzyme are to reconstitute the diamagnetic ions [i. e. Zn(Ⅱ), etc.] in metal-loenzyme or its paramagnetic ions [i. e. Cu(Ⅱ), etc] whose electronic relaxation times are notshort enough to substitute the metal ions of active center in enzyme with [Co(Ⅱ), Ni(Ⅱ)],which are paramagnetic and whose electronic relaxation time is shorter, so that the ~1H NMRspectra of the coordinated structure of active center are separated from those of the rest of en-展开更多
A sea-urchin-like CuO/ZnO porous nanostructure is obtained via a simple solution method followed by a calcination process.There are abundant pores among the resulting nanowires due to the thermal decomposition of copp...A sea-urchin-like CuO/ZnO porous nanostructure is obtained via a simple solution method followed by a calcination process.There are abundant pores among the resulting nanowires due to the thermal decomposition of copper-zinc hydroxide carbonate.The specific surface area of the as-prepared CuO/ZnO sample is determined as 31.3 m^(2)·g^(-1).The gas-sensing performance of the sea-urchin-like CuO/ZnO sensor is studied by exposure to volatile organic compound(VOC)vapors.With contrast to a pure porous sea-urchin-like ZnO sensor,the sea-urchin-like CuO/ZnO sensor shows superior gas-sensing behavior for acetone,formaldehyde,methanol,toluene,isopropanol and ethanol.It exhibits a high response of 52.6-100 ppm acetone vapor,with short response/recovery time.This superior sensing behavior is mainly ascribed to the porous nanowireassembled structure with abundant p-n heterojunctions.展开更多
基金This work was financially supported by the Key Technologies R&D Program of Tianjin(No.06YFGZGX02400).
文摘Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally.The fouling was analyzed by scanning electron microscopy(SEM)and energy dispersive X-ray detector(EDX).The results show that the transfer of calcium and magnesium ions in heat-transfer-surface-water system is affected by zinc ions dissolved from the alloy because of primary battery reaction.Some calcium ions of calcium carbonate crystal are replaced by zinc ions,the growth of aragonite crystal nucleus is retarded,and the transition of calcium carbonate from aragonite to calcite is hampered.
基金Key Technologies R&D Program of Tianjin (06YFGZGX02400)
文摘A copper-zinc alloy doped with rare earth elements was prepared and the mechanism was demonstrated in a simulating boiler and circulating cooling water with rigidity 1 mmol·L-1. The polar curve and scale inhibiting ability of the alloy was tested by a corrosion measurement system and a scale inhibition evaluation system, respectively. Scale samples were characterized with SEM and XRD. It is found that the transfer of cations could be promoted by doping with proper rare earth elements, and the corrosion potentials descend by 25~126 mV. The results indicated that the copper-zinc alloy doped with rare earth elements has higher scale inhibiting ability of CaCO3. The growth of calcite was affected by zinc ions dissolved because of primary battery reaction, and the transition of calcium carbonate from aragonite to calcite was hampered resulting in the proportion of aragonite to calcite is changed from 1.7∶1 to 2.7∶1.
基金Supported by National Natural Science Foundation of China,No. 30870364
文摘AIM: To investigate the effects of superoxide dismutase (SOD) polymorphisms (rs4998557 , rs4880), Helicobacter pylori (H. pylori ) infection and environmental factors in gastric cancer (GC) and malignant potential of gastric precancerous lesions (GPL). METHODS: Copper-zinc superoxide dismutase (SOD1, CuZn-SOD)-G7958A (rs4998557 ) and manganese superoxide dismutase (SOD2, Mn-SOD)-Val16Ala (rs4880 ) polymorphisms were genotyped by SNaPshot multiplex polymerase chain reaction (PCR) in 145 patients with GPL (87 cases of gastric ulcer, 33 cases of gastric polyps and 25 cases of atrophic gastritis), 140 patients with GC and 147 healthy controls. H. pylori infection was detected by immunoblotting analysis. RESULTS: The SOD1-7958A allele was associated with a higher risk of gastric cancer [odds ratio (OR) = 3.01, 95% confidence intervals (95% CI): 1.83-4.95]. SOD216Ala/Val genotype was a risk factor for malignant potential of GPL (OR = 2.04, 95% CI: 1.19-3.49). SOD216Ala/genotype increased the risk of gastric cancer (OR = 2.85, 95% CI: 1.66-4.89). SOD1-7958A/genotype, SOD2-16Ala/genotype, alcohol drinking, positive family history and type Ⅰ H. pylori infection were associated with risk of gastric cancer, and there were additive interactions between the two genotypes and the other three risk factors. SOD2-16Ala/Val genotype and positive family history were associated with malignant potential of GPL and jointly contributed to a higher risk for malignant potential of GPL (OR = 7.71, 95% CI: 2.10-28.22). SOD1-7958A/genotype and SOD2-16Ala/genotype jointly contributed to a higher risk for gastric cancer (OR = 6.43, 95% CI: 3.20-12.91). CONCLUSION: SOD1-7958A/and SOD2-16Ala/-genotypes increase the risk of gastric cancer in Chinese Han population. SOD2-16Ala/-genotype is associated with malignant potential of GPL.
基金the National Natural Science Foundation of China (Nos.51473152 and 51573174).
文摘Enzyme-based anticancer therapy is more attractive for the less side effect than conventional chemotherapy.However,the poor stability and low membrane permeability of enzymes during the intracellular delivery are constraints for its practical applications.In this work,we synthesized novel near-infrared (NIR)-responsive core-shell-structured Prussian blue@fibrous SiO2 (PBFS) nanoparticles as the carrier of superoxide dismutase (SOD) and a glutathione (GSH)-activated Fenton reagent (DiFe).The PBFS nanoparticles are further modified with aGSH-responsive cationic polymer (poly(2-(acryloyloxy)-N,N-dimethyl-N-(4-(((2-((2-(((4-methyl-2-oxo-2H-chromen-7-yl)carbamoyl)oxy)ethyl)disulfaneyl)ethoxy)carbonyl)amino)benzyl)ethan-1-aminium,PSS) containing disulfide bonds and fluorophores.After SOD and DiFe are loaded on the PBFS-PSS nanoparticles,dual chemodynamic/photothermal therapeutic nanoparticulate systems (PBFS-PSS/DiFe/SOD) are obtained.In vitro experiments show that PBFS-PSS/DiFe/SOD nanoparticles have good biocompatibility and can be tracked under fluorescence microscope during the intracellular delivery process in MCF-7 tumor cells due to the GSH-activated release of fluorophores.They also exhibit high efficiency in NIR photothermal conversion and GSH-activated Fenton reaction in tumor cells,thus achieving high-efficient killing effect of tumor cells based on the combination of photothermal and chemodynamic therapeutic performance (PTT and CDT).This work offers a novel pathway to construct a visual multifunctional nanomedicine platform for future cancer therapy.
文摘UP until now, all methods using NMR technique to study the coordinated structure of activecenter in metalloenzyme are to reconstitute the diamagnetic ions [i. e. Zn(Ⅱ), etc.] in metal-loenzyme or its paramagnetic ions [i. e. Cu(Ⅱ), etc] whose electronic relaxation times are notshort enough to substitute the metal ions of active center in enzyme with [Co(Ⅱ), Ni(Ⅱ)],which are paramagnetic and whose electronic relaxation time is shorter, so that the ~1H NMRspectra of the coordinated structure of active center are separated from those of the rest of en-
基金This study was funded by grant Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application(LFCCMCA-09)Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources(LCECSC-01)Natural Science Research Project for Universities in Anhui Province(KJ2019A0480).
文摘A sea-urchin-like CuO/ZnO porous nanostructure is obtained via a simple solution method followed by a calcination process.There are abundant pores among the resulting nanowires due to the thermal decomposition of copper-zinc hydroxide carbonate.The specific surface area of the as-prepared CuO/ZnO sample is determined as 31.3 m^(2)·g^(-1).The gas-sensing performance of the sea-urchin-like CuO/ZnO sensor is studied by exposure to volatile organic compound(VOC)vapors.With contrast to a pure porous sea-urchin-like ZnO sensor,the sea-urchin-like CuO/ZnO sensor shows superior gas-sensing behavior for acetone,formaldehyde,methanol,toluene,isopropanol and ethanol.It exhibits a high response of 52.6-100 ppm acetone vapor,with short response/recovery time.This superior sensing behavior is mainly ascribed to the porous nanowireassembled structure with abundant p-n heterojunctions.