Microscopic imaging of fluorescent reporters for key meristem regulators in live tissues is emerging as a powerful technique, enabling researchers to observe dynamic spatial and temporal distribution of hormonal and d...Microscopic imaging of fluorescent reporters for key meristem regulators in live tissues is emerging as a powerful technique, enabling researchers to observe dynamic spatial and temporal distribution of hormonal and developmental regulators in living cells. Aided by time-lapse microphotography, new types of imaging acquisition and analysis software, and computational modeling, we are gaining significant insights into shoot apical meristem (SAM) behavior and function. This review is focused on summarizing recent advances in the understanding of SAM organization, development, and behavior derived from live-imaging techniques. This includes the revelation of mechanical forces in microtubule-controlled anisotropic growth, the role of the CLV-WUS network in the specification of peripheral zone and central zone cells, the multiple feedback loops involving cytokinin in controlling WUS expression, auxin dynamics in determining the position of new primordia, and, finally, sequence of regulatory events leading to de novo assembly of shoots from callus in culture. Future studies toward formulating "digital SAM" that incorporates multi-dimensional data ranging from images of SAM morphogenesis to a genome-scale expression map of SAM will greatly enhance our ability to understand, predict, and manipulate SAM, containing the stem cells that give rise to all above ground parts of a plant.展开更多
基金supported by the US National Science Foundation (IOB0616096 and MCB0744752)supported by the University of Maryland Agricultural Experiment Station
文摘Microscopic imaging of fluorescent reporters for key meristem regulators in live tissues is emerging as a powerful technique, enabling researchers to observe dynamic spatial and temporal distribution of hormonal and developmental regulators in living cells. Aided by time-lapse microphotography, new types of imaging acquisition and analysis software, and computational modeling, we are gaining significant insights into shoot apical meristem (SAM) behavior and function. This review is focused on summarizing recent advances in the understanding of SAM organization, development, and behavior derived from live-imaging techniques. This includes the revelation of mechanical forces in microtubule-controlled anisotropic growth, the role of the CLV-WUS network in the specification of peripheral zone and central zone cells, the multiple feedback loops involving cytokinin in controlling WUS expression, auxin dynamics in determining the position of new primordia, and, finally, sequence of regulatory events leading to de novo assembly of shoots from callus in culture. Future studies toward formulating "digital SAM" that incorporates multi-dimensional data ranging from images of SAM morphogenesis to a genome-scale expression map of SAM will greatly enhance our ability to understand, predict, and manipulate SAM, containing the stem cells that give rise to all above ground parts of a plant.