采用氧化物固相法制备(LaMn0.8Al0.2O3)1-x(Al2O3)x(0.05≤x≤0.2)系列负温度系数(Negative Temperature Coefficient,NTC)热敏陶瓷材料。利用热重-差热(TG-DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱(EDS)、阻温特性以及...采用氧化物固相法制备(LaMn0.8Al0.2O3)1-x(Al2O3)x(0.05≤x≤0.2)系列负温度系数(Negative Temperature Coefficient,NTC)热敏陶瓷材料。利用热重-差热(TG-DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱(EDS)、阻温特性以及老化性能测试等手段,确定了材料粉体最佳煅烧温度,表征了陶瓷体物相、形貌、元素含量、电学性能、稳定性与Al2O3含量的关系。结果表明:(LaMn0.8Al0.2O3)1-x(Al2O3)x(0.05≤x≤0.2)系列热敏陶瓷材料电阻率随着Al2O3含量增加显著增大,但材料常数B值增加平缓。当x=0.15时,该陶瓷材料呈现出低B(2816.44 K)、高阻(11893.89?·cm)的优良电学特性。热敏电阻经125℃老化500 h,阻值漂移(ΔR/R)均小于0.94%。展开更多
The compound ingots of Pr0.15TbxDy0.85-xFe2 (x=0 to 0.85) were prepared by arc melting in a water Cu boat using arc furnace under a purified Ar atmosphere. Appropriate annealing (850℃, 100 h) can obtain single Laves ...The compound ingots of Pr0.15TbxDy0.85-xFe2 (x=0 to 0.85) were prepared by arc melting in a water Cu boat using arc furnace under a purified Ar atmosphere. Appropriate annealing (850℃, 100 h) can obtain single Laves phase compound. The magnetostriction for these systems will rise obviously when partially substituted Tb or Dy by Pr.展开更多
A temperature stable Li2Zn0.95(SrxCa1-x)0.05Ti3O8(0≤x≤1)ceramics were fabricated using a conventional solid-state route sintered at 1100℃for 4 h.The XRD results indicate that the main phase Li2ZnTi3O8 and secondary...A temperature stable Li2Zn0.95(SrxCa1-x)0.05Ti3O8(0≤x≤1)ceramics were fabricated using a conventional solid-state route sintered at 1100℃for 4 h.The XRD results indicate that the main phase Li2ZnTi3O8 and secondary phase including SrxCa1-xTiO3(0≤x≤1)solid solution and TiO2 co-exist in composite and form a stable composite system when the(CaxSr1-x)(0≤x≤1)substitutes for Zn of Li2ZnTi3O8 ceramic.As x is increased from 0 to 1,the relative permittivity(εr)increases from 26.65 to 27.12,and the quality factor(Q×f)increases from 63300 to 66600 GHz.With the increased of x,the temperature coefficient of resonant frequency(τf)increases from 0.27 to 8.23 ppm/℃,and then decreases to 3.51 ppm/℃.On the whole,the Li2Zn0.95(SrxCa1-x)0.05Ti3O8(0≤x≤1)ceramics show excellent comprehensive properties of middleεr=25-27,higher Q×f≥60000 GHz andτf≤±8.5 ppm/℃.展开更多
文摘采用氧化物固相法制备(LaMn0.8Al0.2O3)1-x(Al2O3)x(0.05≤x≤0.2)系列负温度系数(Negative Temperature Coefficient,NTC)热敏陶瓷材料。利用热重-差热(TG-DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱(EDS)、阻温特性以及老化性能测试等手段,确定了材料粉体最佳煅烧温度,表征了陶瓷体物相、形貌、元素含量、电学性能、稳定性与Al2O3含量的关系。结果表明:(LaMn0.8Al0.2O3)1-x(Al2O3)x(0.05≤x≤0.2)系列热敏陶瓷材料电阻率随着Al2O3含量增加显著增大,但材料常数B值增加平缓。当x=0.15时,该陶瓷材料呈现出低B(2816.44 K)、高阻(11893.89?·cm)的优良电学特性。热敏电阻经125℃老化500 h,阻值漂移(ΔR/R)均小于0.94%。
基金the Natural Science Foundation of Hebei Province 596028 and the National NaturalScience Foundation of China No.59871062.
文摘The compound ingots of Pr0.15TbxDy0.85-xFe2 (x=0 to 0.85) were prepared by arc melting in a water Cu boat using arc furnace under a purified Ar atmosphere. Appropriate annealing (850℃, 100 h) can obtain single Laves phase compound. The magnetostriction for these systems will rise obviously when partially substituted Tb or Dy by Pr.
基金Funded by the Open Project Program of Key Laboratory of Inorganic Functional Materials and Devices,Chinese Academy of Sciences(No.KLIFMD201606)the Open Fund of National Innovation Platform(No.2017YJ163)+1 种基金the National Natural Science Foundation of China(Nos.51502220,51521001,and 51672197)the Open Foundation of Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics(Wuhan University of Technology)(No.TAM201802)。
文摘A temperature stable Li2Zn0.95(SrxCa1-x)0.05Ti3O8(0≤x≤1)ceramics were fabricated using a conventional solid-state route sintered at 1100℃for 4 h.The XRD results indicate that the main phase Li2ZnTi3O8 and secondary phase including SrxCa1-xTiO3(0≤x≤1)solid solution and TiO2 co-exist in composite and form a stable composite system when the(CaxSr1-x)(0≤x≤1)substitutes for Zn of Li2ZnTi3O8 ceramic.As x is increased from 0 to 1,the relative permittivity(εr)increases from 26.65 to 27.12,and the quality factor(Q×f)increases from 63300 to 66600 GHz.With the increased of x,the temperature coefficient of resonant frequency(τf)increases from 0.27 to 8.23 ppm/℃,and then decreases to 3.51 ppm/℃.On the whole,the Li2Zn0.95(SrxCa1-x)0.05Ti3O8(0≤x≤1)ceramics show excellent comprehensive properties of middleεr=25-27,higher Q×f≥60000 GHz andτf≤±8.5 ppm/℃.