To address the corrosion and dendrite issues of lithium metal anodes, a protective layer was ex-situ constructed by P4S10 modification. It was determined by X-ray photoelectron spectroscopy and Raman spectra that the ...To address the corrosion and dendrite issues of lithium metal anodes, a protective layer was ex-situ constructed by P4S10 modification. It was determined by X-ray photoelectron spectroscopy and Raman spectra that the main constituents of the protective layer were P4S10, Li3PS4 and other LixPySztype derivatives. The protective layer was proved to be effective to stabilize the interphase of lithium metal. With the modified Li anodes, symmetric cells could deliver stable Li plating/stripping for 16000 h;Li–S batteries exhibited a specific capacity of 520 m A h g-1 after 200 cycles at 1000 m A g-1 with average Coulombic efficiency of 97.9%. Therefore, introducing LixPySzbased layer to protect Li anode provides a new strategy for the improvement of Li metal batteries.展开更多
基金financially supported by the National Key Research and Development Program of China(no.2016YFB0100200)Beijing Municipal Science and Technology Project(no.Z181100004518001)。
文摘To address the corrosion and dendrite issues of lithium metal anodes, a protective layer was ex-situ constructed by P4S10 modification. It was determined by X-ray photoelectron spectroscopy and Raman spectra that the main constituents of the protective layer were P4S10, Li3PS4 and other LixPySztype derivatives. The protective layer was proved to be effective to stabilize the interphase of lithium metal. With the modified Li anodes, symmetric cells could deliver stable Li plating/stripping for 16000 h;Li–S batteries exhibited a specific capacity of 520 m A h g-1 after 200 cycles at 1000 m A g-1 with average Coulombic efficiency of 97.9%. Therefore, introducing LixPySzbased layer to protect Li anode provides a new strategy for the improvement of Li metal batteries.