期刊文献+
共找到498,454篇文章
< 1 2 250 >
每页显示 20 50 100
Using fracture mechanics method to analyze the failure mechanism and equilibrium equation of interfacial loess-mudstone landslides
1
作者 LI Shuanhu LI Chi GAO Yu 《Journal of Mountain Science》 2025年第1期156-166,共11页
Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of l... Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research. 展开更多
关键词 Loess-mudstone landslide Failure mechanism Shear fracture energy Equilibrium equation Safety factor
下载PDF
Editorial for Multiscale&Multifield Coupling in Geomechanics
2
作者 Min Wang Pengzhi Pan +1 位作者 Andrew H.C.Chan Y.T.Feng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1919-1921,共3页
We are delighted to serve as guest editors for this special issue in the Journal of Rock Mechanics and Geotechnical Engineering.The purpose of this special issue is dedicated to gathering the latest research work on M... We are delighted to serve as guest editors for this special issue in the Journal of Rock Mechanics and Geotechnical Engineering.The purpose of this special issue is dedicated to gathering the latest research work on Multiscale&Multifield Coupling in Geomechanics,where we delve into the intricate interplay of various fields and scales that govern the behavior of geomaterials.In total,30 manuscripts from USA,China,UK,Germany,Canada,India and United Arab Emirates are selected to be included in this issue. 展开更多
关键词 materials. GATHERING mechanics
下载PDF
Induction System for a Fusion Reactor: Quantum Mechanics Chained up
3
作者 Friedrich Björn Grimm 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期158-166,共9页
In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magn... In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magnetic plasma confinement within fusion reactors. The pursuit of clean energy, essential to combat climate change, hinges on the ability to harness nuclear fusion efficiently. Traditional approaches have faced challenges in plasma stability and energy efficiency. The novel induction system presented here not only addresses these issues but also transforms fusion reactors into integrated construction systems. This innovation promises compact fusion reactors, marking a significant step toward a clean and limitless energy future, free from the constraints of traditional power sources. This revolutionary quantum induction system redefines plasma confinement in fusion reactors, unlocking clean, compact, and efficient energy production. 展开更多
关键词 Fusion Reactor Plasma Confinement Quantum mechanics Clean Energy
下载PDF
Workplace Hazards and Risk among Automobile Mechanics (A Case of Kugbo Mechanic Village in FCT)
4
作者 Clement Ogbeh Anthony Chinenye Justina Edeh +1 位作者 Chukwuemeka Martins Alozie Oluchi Mkpae Blessing 《Occupational Diseases and Environmental Medicine》 2024年第4期281-297,共17页
Background: Automobile mechanics face different occupational hazards, which can have a wide range of physical and biological impacts depending on the frequency, intensity, and length of exposure. This study looked at ... Background: Automobile mechanics face different occupational hazards, which can have a wide range of physical and biological impacts depending on the frequency, intensity, and length of exposure. This study looked at the dangers and hazards that automobile mechanics in Kugbo Mechanic village in the Federal Capital Territory of Nigeria faced in their jobs. Research Objectives: The specific objectives were to determine the typical occupational risks faced by Kugbo automobile mechanics, evaluate the degree and risk of related health problems and injuries among Kugbo mechanics workers, examine the application of PPE and additional safety precautions among Kugbo mechanics, and assess Kugbo automobile workers’ understanding of the consequences of operating without PPE. Methods: A cross-sectional descriptive survey was conducted using purposeful sampling. A validated structured questionnaire was administered to 200 automobile workers at risk of exposure to hazards. The questionnaire covered socio-demographics, types of risk exposure, perceptions of their vulnerability, and the use of personal protective equipment. The data was analysed using descriptive and inferential statistics in Statistical Packages for Social version 26. Cross tabulation was used to identify patterns and associations between variables, and the Relative importance Index method was used to determine the relative importance of adherence to PPE and other safety issues. Results: Findings show that 5.1% of the respondents had completed secondary school, 25.3% had attended a technical school, 36.9% had completed primary school, and 32.8% had no formal education. Long exposure makes automobile workers more vulnerable to illnesses attributed to their job, as 91.9% work long hours sitting and 78.3% work long hours standing. The overall mean score of 3.72 shows that most respondents did not agree that automobile workers wear PPEs and follow other safety precautions. The medical issues listed include burns on the body, depression, heart illness, severe headaches and abdominal pain, and poor vision. Conclusion: The findings reveal that automobile workers are exposed to several risks and hazards that have resulted in various health-related problems. Therefore, using PPEs and adhering to occupational safety practices will mitigate their exposure to workplace hazards. 展开更多
关键词 Automobile Hazards Kugbo Mechanic Village Risks Federal Capital Territory
下载PDF
Case study on the mechanics of NPR anchor cable compensation for large deformation tunnel in soft rock in the Transverse Mountain area,China
5
作者 LI Yong ZHENG Jing +3 位作者 HUO Shu-sen WANG Feng-nian HE Man-chao TAO Zhi-gang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2054-2069,共16页
A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri... A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas. 展开更多
关键词 soft rock large deformation NPR anchor cable physical model numerical simulation compensation mechanics
下载PDF
Characteristics of Rock Mechanics Response and Energy Evolution Regime of Deep Reservoirs in the Bozhong Sag,Bohai Bay Basin
6
作者 Suogui Shang Kechao Gao +4 位作者 QingbinWang Xinghua Zhang Pengli Zhou Jianhua Li Peng Chu 《Energy Engineering》 EI 2024年第9期2505-2524,共20页
Hydraulic fracturing is a mature and effectivemethod for deep oil and gas production,which provides a foundation for deep oil and gas production.One of the key aspects of implementing hydraulic fracturing technology l... Hydraulic fracturing is a mature and effectivemethod for deep oil and gas production,which provides a foundation for deep oil and gas production.One of the key aspects of implementing hydraulic fracturing technology lies in understanding mechanics response characteristics of rocks in deep reservoirs under complex stress conditions.In this work,based on outcrop core samples,high-stress triaxial compression tests were designed to simulate the rock mechanics behavior of deep reservoirs in Bozhong Sag.Additionally,this study analyzes the deformation and damage law for rock under different stress conditions.Wherein,with a particular focus on combining energy dissipation theory to further understand damage law for deep reservoirs.The experimental results show that regardless of stress conditions,the process of deformation/failure of deep-seated reservoirs goes through five stages:Fracture compaction,newfracture formation,stable fracture expansion,unstable fracture expansion,and post-peak residual deformation.Under different stress conditions,the energy change laws of specimens are similar.The energy dissipation process of rocks corresponds closely to the trend of deformation-failure curve,then displays distinctive stage characteristics.Wherein,in stage of rock fracture compaction,the input energy curve is approximately coincident with the elastic strain energy curve,while the dissipation energy curve remains near zero.With the increase of strain,the growth rate of elastic strain energy increases gradually,but with the deformation entering the crack propagation stage,the growth rate of elastic strain energy slows down and the dissipation energy increases gradually.Finally,in the post-peak stage,rock fracture releases a lot of energy,which leads to the sharp decline of elastic strain energy curve.In addition,the introduction of damage variable D quantifies the analysis of the extent of failure for rocks.During the process of increasing strain,rock damage exhibits nonlinear growth with increasing stress. 展开更多
关键词 Deep rock mechanics triaxial compression energy dissipation damage variable
下载PDF
Dental Treatment Using Quantum Mechanics for Knee Joint Pain
7
作者 Yoshiro Fujii 《Natural Science》 2024年第9期146-149,共4页
In clinical practice, dentists sometimes encounter phenomena that cannot be explained by modern western medical concepts;for example, the patient’s medical symptoms improve by bringing medicines or dentures close to ... In clinical practice, dentists sometimes encounter phenomena that cannot be explained by modern western medical concepts;for example, the patient’s medical symptoms improve by bringing medicines or dentures close to the body. Although it seems difficult to completely elucidate the mechanism through modern western medicine, it can be explained using quantum mechanics. The quantum, the smallest unit of matter composition, exhibits wave-particle duality. The fact that symptoms can be improved simply by bringing dentures or medicines closer to the body indicates that the waves emitted by dentures or medicines interfere with the pathological waves emitted by the pathological site. Thus, the pathological waves are deformed and lead to a change in symptoms. In this way, quantum theory can explain phenomena that are difficult to elucidate in conventional medicine, which are encountered in clinical practice. So far, the author has presented a case of difficulty in raising the upper limb where the symptoms improved without the need for dentures in the mouth by adjusting the dentures outside the mouth. This time, the author would like to introduce a case which the patient’s knee pain improved by adjusting the dentures outside the mouth. 展开更多
关键词 Denture Adjustment Knee Joint Pain Quantum mechanics Wave Interference The Bi-Digital O-Ring Test
下载PDF
New Approach to Synchronize General Relativity and Quantum Mechanics with Constant “K”-Resulting Dark Matter as a New Fundamental Force Particle
8
作者 Siva Prasad Kodukula 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期292-302,共11页
Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a... Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further. 展开更多
关键词 General Relativity Quantum mechanics Space Time Dark Matter A New Fundamental Constant “K”
下载PDF
An 8-Node Plane Hybrid Element for StructuralMechanics Problems Based on the Hellinger-Reissner Variational Principle
9
作者 Haonan Li WeiWang +1 位作者 Quan Shen Linquan Yao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1277-1299,共23页
The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurat... The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy. 展开更多
关键词 8-node plane hybrid element Hellinger-Reissner variational principle locking behaviors structural mechanics problems
下载PDF
Improved Units of Measure in Rotational Mechanics
10
作者 Richard James Petti 《World Journal of Mechanics》 2024年第1期1-7,共7页
The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the gene... The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the general rule for defining continuous coordinates and units in mathematics and mathematical physics. After 30+ years of wrestling with these problems, the ultimate authority on units of measure has declared that Newton–meter and Joule are not equivalent in rotational mechanics, as they are in the rest of physics. This article proposes a simple modification to SI units called “Nonstandard International units” (“NI units”) until a better name is agreed upon. NI units yield correct numerical results and physically correct units of measure, and they satisfy the principle of general covariance. The main obstacle to the adoption of NI units is the consensus among users that the radius of rotation should have the unit meter because the radius can be measured with a ruler. NI units assigned to radius should have units meter/radian because the radius is a conversion factor between angular size and circumferential length, as in arclength = rθ. To manage the social consensus behind SI units, the author recommends retaining SI units as they are, and informing users who want correct units that NI units solve the technical problems of SI units. 展开更多
关键词 Rotational mechanics Angular Unit TORQUE Moment of Inertia Angular Momentum General Covariance
下载PDF
Atomic Quantum Mechanics Based on Atomic Functions
11
作者 Sergei Yu. Eremenko 《Journal of Applied Mathematics and Physics》 2024年第11期3941-3963,共23页
Based on theorems, the Atomic AString Functions theory, evolving since the 1970s, is introduced into Quantum Mechanics to represent a wave function via the shifts and stretches of smooth finite Atomic Function pulses/... Based on theorems, the Atomic AString Functions theory, evolving since the 1970s, is introduced into Quantum Mechanics to represent a wave function via the shifts and stretches of smooth finite Atomic Function pulses/solitonic atoms. It leads to a novel ‘atomic interpretation’ where wave functions become the superpositions of localized Atomic Wave Functions, which can also describe collapsed wave functions, represent Gaussians, uphold Heisenberg’s uncertainly principle, and a more generic concept of Atomic Harmonic Oscillator. Atomic Functions can solve the boundary wave function discontinuity problem for particle-in-a-box and other solutions by introducing atomic wave packets. It highlights some limitations of the Schrödinger equation, yielding harmonic representations that may not be flexible enough to satisfy complex boundary conditions. The theory follows more generic research on Atomic Spacetime, quantum gravity, and field theories to derive common mathematical blocks of unified fields similar to loop quantum gravity and strings theories. 展开更多
关键词 Quantum mechanics Atomic Function Atomic Wave Function Atomic Oscillator Atomic Spacetime Unified Theories
下载PDF
Investigation of the Micro-Mechanics of an Extruded Precipitation-Strengthened Magnesium Alloy under Cyclic Loading
12
作者 Chuhao Liu Xiaodan Zhang +1 位作者 Huamiao Wang Yinghong Peng 《Journal of Materials Science and Chemical Engineering》 2024年第7期40-52,共13页
Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macrosc... Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip. 展开更多
关键词 Cyclic Deformation Magnesium Alloy In-Situ Neutron Diffraction Precipitation Strengthening Crystal Plasticity Lattice Strain Mechanism Evolution
下载PDF
Teaching Experiment in Engineering Mechanics Based on Simulation Technology:A Case Study
13
作者 Jinru Ma 《Journal of Contemporary Educational Research》 2024年第7期277-282,共6页
This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as co... This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as colored Mises stress nephograms,were obtained.These resources were integrated into the original curriculum to conduct teaching experiments.The results show that the use of digital resources significantly improved the quality of teaching in EM.The integration of simulation technology in EM teaching provides a promising direction for the improvement of vocational education and the cultivation of high-quality skilled talents.The development and application of more simulation-based teaching cases should be studied by scholars. 展开更多
关键词 Engineering mechanics Simulation technology Teaching experiment TEACHING Vocational education
下载PDF
Relativistic Mechanics in Positive and Negative Subspace-Time according to the Inverse Relativity Model
14
作者 Michael Girgis 《Journal of Applied Mathematics and Physics》 2024年第11期3784-3815,共32页
In the second paper on the inverse relativity model, we explained in the first paper [1] that analyzing the four-dimensional displacement vector on space-time according to a certain approach leads to the splitting of ... In the second paper on the inverse relativity model, we explained in the first paper [1] that analyzing the four-dimensional displacement vector on space-time according to a certain approach leads to the splitting of space-time into positive and negative subspace-time. Here, in the second paper, we continue to analyze each of the four-dimensional vectors of velocity, acceleration, momentum, and forces on the total space-time fabric. According to the approach followed in the first paper. As a result, in the special case, we obtain new transformations for each of the velocity, acceleration, momentum, energy, and forces specific to each subspace-time, which are subject to the positive and negative modified Lorentz transformations described in the first paper. According to these transformations, momentum remains a conserved quantity in the positive subspace and increases in the negative subspace, while the relativistic total energy decreases in the positive subspace and increases in the negative subspace. In the general case, we also have new types of energy-momentum tensor, one for positive subspace-time and the other for negative subspace-time, where the energy density decreases in positive subspace-time and increases in negative subspace-time, and we also obtain new gravitational field equations for each subspace-time. 展开更多
关键词 4D Velocity Vector Analysis Positive Subspace Negative Subspace Negative Relativistic mechanics Positive Tensor of Energy and Momentum Inverse Theory of Relativity
下载PDF
Research on the Assessment System of Computational Mechanics Courses Based on the TOPSIS Entropy Weight Model
15
作者 Huijun Ning Ruhuan Yu +1 位作者 Qianshu Wang Mingming Lin 《Journal of Contemporary Educational Research》 2024年第6期166-182,共17页
This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qu... This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality. 展开更多
关键词 TOPSIS entropy weight model Computational mechanics Course assessment and evaluation system Assessment model
下载PDF
Artificial intelligence technology in rock mechanics and rock engineering
16
作者 Xia-Ting Feng Cheng-Xiang Yang +7 位作者 Ben-Guo He Zhi-Bin Yao Lei Hu Wei Zhang Rui Kong Jun Zhao Zao-Bao Liu Xin Bi 《Deep Resources Engineering》 2024年第2期1-25,共25页
The scope and scale of rock engineering activities have witnessed continuous expansion,which makes the geological conditions of rock engineering increasingly complex,and there are more and more types of disasters occu... The scope and scale of rock engineering activities have witnessed continuous expansion,which makes the geological conditions of rock engineering increasingly complex,and there are more and more types of disasters occurring during the construction and operation processes.The uncertainty of engineering geological information and the unclear nature of rock mass failure and disaster mechanisms pose increasingly prominent challenges to the study of rock mechanics and engineering problems.The artificial intelligence technology develops driven by data and knowledge,especially the proposal of digital-twin technology and metaverse ideas.This has injected new innovative impetus for the development of rock mechanics and engineering intelligence,where data and knowledge have been greatly enriched and updated in recent years.This article proposes the construction idea of a rock mechanics and engineering artificial intelligence system based on the metaverse,including intelligent recognition of three-dimensional(3D)geological structures,intelligent recognition of 3D geostress,intelligent recognition of rock mechanical behavior,intelligent evaluation,monitoring and early warning of rock engineering disaster,intelligent design of rock engineering,and intelligent construction of rock engineering.Two typical engineering applications are used as case studies to illustrate the integrated method of applying this system to solve engineering problems with multiple tasks. 展开更多
关键词 Rock mechanics and rock engineering Artificial intelligence Metaverse Data and knowledge-driven Intelligent construction
下载PDF
3WF-1300型悬挂式喷杆喷雾机的设计与试验
17
作者 李存斌 梁玉成 +4 位作者 张庆柱 陈宝昌 谢宇峰 吕海杰 宋秋梅 《农机化研究》 北大核心 2025年第3期77-81,共5页
针对我国目前大田喷雾机仍以中小型机具为主,产品技术含量相对较低,使用可靠性差,施药过程存在雾滴飘移、喷洒不均匀、农药有效利用率低等问题,在分析悬挂式喷杆喷雾机工作原理的基础上设计并研制了一种高效、安全的3WF-1300型悬挂式喷... 针对我国目前大田喷雾机仍以中小型机具为主,产品技术含量相对较低,使用可靠性差,施药过程存在雾滴飘移、喷洒不均匀、农药有效利用率低等问题,在分析悬挂式喷杆喷雾机工作原理的基础上设计并研制了一种高效、安全的3WF-1300型悬挂式喷杆喷雾机。该机配套动力为88.2~117.6 kW,药箱容量1 300 L,喷幅18 m,可液压控制喷杆折叠、展开和升降,有效降低了驾驶人员的操控难度,能够实现舒适、精准、高效的农药喷施作业,提高了农药有效利用率、降低了农药施用量、减少了环境污染,极大地保护了操控人员的身体健康。田间试验结果表明:喷雾机结构参数设计合理,喷杆的折叠、展开和升降过程平稳顺滑,无卡顿现象;喷雾均匀,作业效率高,达到了设计指标的要求;田间试验中,沿喷杆方向喷雾分布变异系数为5.3%,结果优于国家标准。 展开更多
关键词 喷杆式喷雾机 折叠喷杆 悬挂机构 升降机构
下载PDF
力学约束对锂离子电池双层电极中锂扩散和应力的影响
18
作者 张凯 徐鹏 +3 位作者 关学锋 杜玉群 王轲杰 陆勇俊 《物理学报》 北大核心 2025年第2期65-74,共10页
锂离子电池中的电极总是处于特定的约束当中,这些约束既包括电池内部不可避免的被动结构约束,又包括一些新兴技术应用场景可能赋予的外部主动约束.本文主要利用化学-力学双向耦合的基本假设建立描述双层电极结构的理论模型,考虑4种不同... 锂离子电池中的电极总是处于特定的约束当中,这些约束既包括电池内部不可避免的被动结构约束,又包括一些新兴技术应用场景可能赋予的外部主动约束.本文主要利用化学-力学双向耦合的基本假设建立描述双层电极结构的理论模型,考虑4种不同强弱的理想化变形约束作为其边界条件,并通过数值求解研究在充电过程中这些外部约束对双层电极中Li扩散和应力的影响.从力学的角度,所研究的双层电极结构存在侧向伸缩和弯曲变形两个自由度,弱化的约束条件能够部分或完全激活这些应力释放机制,从而降低电极结构整体的应力水平,并提升结构的力学稳定性.然而,从电化学的角度,电极结构的正向弯曲变形所产生的应力梯度会阻碍嵌Li过程,强化的约束能够部分或完全抑制电极的正向弯曲,使活性层内Li浓度更加均匀,从而提高活性层的容量利用率.这些结果不仅为进一步理解双层电极在更加真实或极端服役条件下的化学-力学响应提供理论参考,还从设计的角度表明折中的外部约束有利于平衡电极的结构耐久性和电化学性能. 展开更多
关键词 锂离子电池 化学-力学耦合 平板电极 力学约束
下载PDF
小米椒生物力学特性试验研究
19
作者 张善文 孙永元 +4 位作者 张永吉 戴敏 缪宏 张燕军 高吉成 《农机化研究》 北大核心 2025年第4期151-159,共9页
为了提升小米椒的机械化收获质量和效率,对小米椒的物理及力学特性进行了试验测量。通过测量,小米椒在15天内的含水率为86%~90%,且中部最高、首部次之、尾部最低。通过拉伸试验,确定小米椒断裂时的抗拉强度为0.679 MPa±0.03 MPa。... 为了提升小米椒的机械化收获质量和效率,对小米椒的物理及力学特性进行了试验测量。通过测量,小米椒在15天内的含水率为86%~90%,且中部最高、首部次之、尾部最低。通过拉伸试验,确定小米椒断裂时的抗拉强度为0.679 MPa±0.03 MPa。采用正交旋转组合设计方法,确定了加载速度对抗压强度的影响极显著,小米椒直径对抗压强度的影响显著,加载速度对剪切强度的影响显著。通过轴向压缩和剪切试验,确定了小米椒首部的抗压强度平均值为0.62 MPa,弹性模量平均值为2.72 MPa;中部抗压强度平均值为0.64 MPa,弹性模量平均值为3.17 MPa;尾部抗压强度平均值为0.61 MPa,弹性模量平均值为2.64 MPa,小米椒剪切强度平均值为0.32 MPa。 展开更多
关键词 小米椒 力学特性 物理特性
下载PDF
单晶镍纳米切削材料去除行为与机理研究
20
作者 田海兰 闫少华 +1 位作者 韩涛 闫海鹏 《制造技术与机床》 北大核心 2025年第1期157-165,共9页
单晶镍纳米尺度加工时的材料去除机理对实现其超精密加工尤为重要。为此,借助分子动力学仿真研究单晶镍纳米切削时的力热行为、表面/亚表面形成特征以及塑性变形机制以揭示材料去除机理。结果表明单晶镍纳米切削时,有序的镍原子在刀具... 单晶镍纳米尺度加工时的材料去除机理对实现其超精密加工尤为重要。为此,借助分子动力学仿真研究单晶镍纳米切削时的力热行为、表面/亚表面形成特征以及塑性变形机制以揭示材料去除机理。结果表明单晶镍纳米切削时,有序的镍原子在刀具挤压和剪切作用下以非晶结构的形式被去除,部分具有面心立方(face center cubic, FCC)结构的镍原子转变成密排六方(hexagonal close-packed, HCP)结构和非晶结构,主导了相变与非晶化;同时出现伯氏矢量分别为1/6<112>、1/3<100>、1/6<110>、1/3<111>以及1/2<110>的位错线。单晶镍纳米切削时的塑性变形机制为相变、非晶化和位错滑移。在切削过程中,由于几何条件与能量条件被同时满足,发生1/2<110>全位错转变为1/6<112>不全位错的位错反应。在切削力热的作用下,已加工亚表面出现了位错环、梯杆位错、棱住位错、V型位错、原子团簇和空位等缺陷结构。相比于(100)晶面和(110)晶面,沿(111)晶面切削有利于减小亚表面缺陷层深度。 展开更多
关键词 单晶镍 纳米切削 分子动力学 材料去除机理 塑性变形机制
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部