The Sr2 CeO4:Ln3+(Ln=Eu,Dy)fine phosphor particles were prepared by a facile wet chemical approach,in which the consecutive hydrothermal-combustion reaction was performed.The doping of Ln3+into Sr2 CeO4 has little inf...The Sr2 CeO4:Ln3+(Ln=Eu,Dy)fine phosphor particles were prepared by a facile wet chemical approach,in which the consecutive hydrothermal-combustion reaction was performed.The doping of Ln3+into Sr2 CeO4 has little influence on the structure of host,and the as-prepared samples display wellcrystallized spherical or elliptical shape with an average particle size at about 100-200 nm.For Eu3+ions-doped Sr2 CeO4,with the increase of Eu3+-doping concentration,the blue light emission band with the maximum at 468 nm originating from a Ce4+→O2-charge transfer of the host decreases obviously and the characteristic red light emission of Eu3+(5 D0→7 F2 transition at 618 nm)is enhanced gradually.Simultaneously,the fluorescent lifetime of the broadband emission of Sr2 CeO4 decreases with the doping of Eu3+,indicating an efficient energy transfer from the host to the doping Eu3+ions.The ene rgy transfer efficiency from the host to Eu3+was investigated in detail,and the emitting color of Sr2 CeO4:Eu3+can be easily tuned from blue to red by varying the doping concentration of Eu3+ions.Moreover,the luminescence of Dy3+-doped Sr2 CeO4 was also studied.Similar energy transfer pheno menon can be observed,and the incorporation of Dy3+into Sr2 CeO4 host leads to the characteristic emission of 4 F9/2→6 H15/2(488 nm,blue light)and 4 F9/2→6 H13/2(574 nm,yellow light)of Dy3+.The Sr2 CeO4:Ln3+fine particles with tunable luminescence are quite beneficial for its potential applications in the optoelectronic fields.展开更多
A topological index (It) of ionic characteristic is defined as It=(1+Δ+E i)·m i in this paper. It is of good selectivity and solubility for all simple cations. Colse relationship exists between It and 10 physic ...A topological index (It) of ionic characteristic is defined as It=(1+Δ+E i)·m i in this paper. It is of good selectivity and solubility for all simple cations. Colse relationship exists between It and 10 physic chemical properties of Ln 3+ ions, and 8 correlation coefficients among them are more than0.99.展开更多
The presented study concerned up-converting core/shell type nanomaterials based on lanthanide(Ⅲ) ions, Ln(Ⅲ), doped orthoborates. The system studied composed of the GdBO3 doped with Yb^3+/Tb^3+ luminescent cor...The presented study concerned up-converting core/shell type nanomaterials based on lanthanide(Ⅲ) ions, Ln(Ⅲ), doped orthoborates. The system studied composed of the GdBO3 doped with Yb^3+/Tb^3+ luminescent core ensured an effective cooperative sensitization up-conversion, resulting in a bright green luminescence. The silica coating process was performed by a modified St?ber method, which resulted in the formation of core-shell nanostructures, making them suitable for bioapplications. The nanophosphors and nanocomposites were obtained by various methods, such as co-precipitation in the presence of Triton X-100 and micelle synthesis with ethylenediaminetetraacetic acid(EDTA) as organic modifiers/surfactants. The synthesized nanomaterials were characterized with the use of powder X-ray diffraction(XRD), infrared light absorption with Fourier transform FT-IR spectra, transmission electron microscopy(TEM), up-conversion emission spectra under IR light, as well as excitation spectra, emission spectra and fluorescence lifetimes under UV light, and their photophysical properties were compared.展开更多
基金Project supported by National Natural Science Foundation of China(51972097)This work was financially supported by the Science Foundation of Hebei Normal University,China(L2019K11).This work was also financially supported by the project WINLEDS—POCI-01-0145-FEDER-030351 and developed within the scope of the project CICECO-Aveiro Institute of Materials,FCT Ref.UID/CTM/50011/2019,financed by national funds through the FCT/MCTES.
文摘The Sr2 CeO4:Ln3+(Ln=Eu,Dy)fine phosphor particles were prepared by a facile wet chemical approach,in which the consecutive hydrothermal-combustion reaction was performed.The doping of Ln3+into Sr2 CeO4 has little influence on the structure of host,and the as-prepared samples display wellcrystallized spherical or elliptical shape with an average particle size at about 100-200 nm.For Eu3+ions-doped Sr2 CeO4,with the increase of Eu3+-doping concentration,the blue light emission band with the maximum at 468 nm originating from a Ce4+→O2-charge transfer of the host decreases obviously and the characteristic red light emission of Eu3+(5 D0→7 F2 transition at 618 nm)is enhanced gradually.Simultaneously,the fluorescent lifetime of the broadband emission of Sr2 CeO4 decreases with the doping of Eu3+,indicating an efficient energy transfer from the host to the doping Eu3+ions.The ene rgy transfer efficiency from the host to Eu3+was investigated in detail,and the emitting color of Sr2 CeO4:Eu3+can be easily tuned from blue to red by varying the doping concentration of Eu3+ions.Moreover,the luminescence of Dy3+-doped Sr2 CeO4 was also studied.Similar energy transfer pheno menon can be observed,and the incorporation of Dy3+into Sr2 CeO4 host leads to the characteristic emission of 4 F9/2→6 H15/2(488 nm,blue light)and 4 F9/2→6 H13/2(574 nm,yellow light)of Dy3+.The Sr2 CeO4:Ln3+fine particles with tunable luminescence are quite beneficial for its potential applications in the optoelectronic fields.
文摘A topological index (It) of ionic characteristic is defined as It=(1+Δ+E i)·m i in this paper. It is of good selectivity and solubility for all simple cations. Colse relationship exists between It and 10 physic chemical properties of Ln 3+ ions, and 8 correlation coefficients among them are more than0.99.
基金supported by the Polish Ministry of Science and Higher Education("Diamond Grant"Nr DI2011 011441)
文摘The presented study concerned up-converting core/shell type nanomaterials based on lanthanide(Ⅲ) ions, Ln(Ⅲ), doped orthoborates. The system studied composed of the GdBO3 doped with Yb^3+/Tb^3+ luminescent core ensured an effective cooperative sensitization up-conversion, resulting in a bright green luminescence. The silica coating process was performed by a modified St?ber method, which resulted in the formation of core-shell nanostructures, making them suitable for bioapplications. The nanophosphors and nanocomposites were obtained by various methods, such as co-precipitation in the presence of Triton X-100 and micelle synthesis with ethylenediaminetetraacetic acid(EDTA) as organic modifiers/surfactants. The synthesized nanomaterials were characterized with the use of powder X-ray diffraction(XRD), infrared light absorption with Fourier transform FT-IR spectra, transmission electron microscopy(TEM), up-conversion emission spectra under IR light, as well as excitation spectra, emission spectra and fluorescence lifetimes under UV light, and their photophysical properties were compared.