This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power sys...This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.展开更多
A multi-objective particle swarm optimization (MOPSO) approach for multi-objective economic load dispatch problem in power system is presented in this paper. The economic load dispatch problem is a non-linear constrai...A multi-objective particle swarm optimization (MOPSO) approach for multi-objective economic load dispatch problem in power system is presented in this paper. The economic load dispatch problem is a non-linear constrained multi-objective optimization problem. The proposed MOPSO approach handles the problem as a multi-objective problem with competing and non-commensurable fuel cost, emission and system loss objectives and has a diversity-preserving mechanism using an external memory (call “repository”) and a geographically-based approach to find widely different Pareto-optimal solutions. In addition, fuzzy set theory is employed to extract the best compromise solution. Several optimization runs of the proposed MOPSO approach were carried out on the standard IEEE 30-bus test system. The results revealed the capabilities of the proposed MOPSO approach to generate well-distributed Pareto-optimal non-dominated solutions of multi-objective economic load dispatch. Com- parison with Multi-objective Evolutionary Algorithm (MOEA) showed the superiority of the proposed MOPSO approach and confirmed its potential for solving multi-objective economic load dispatch.展开更多
The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving...The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases.展开更多
In Dynamic Economic Load Dispatch (DELD), optimization and evolution computation become a major part with the strategy for solving the issues. From various algorithms Differential Evolution (DE) and Particle Swarm Opt...In Dynamic Economic Load Dispatch (DELD), optimization and evolution computation become a major part with the strategy for solving the issues. From various algorithms Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms are used to encode in a vector form and in sharing information and both approaches are based on the master-apprentice mechanism for the Dual Evolution Strategy. In order to overcome the challenges like the clustering of PSO, optimization problems and maximum and minimum searching, a new approach is developed with the improvement of searching and efficient process. In this paper, an Enhanced Hybrid Differential Evolution and Particle Swarm Optimization (EHDE-PSO) is proposed with Dynamic Sigmoid Weight using parallel procedures. A hybrid form of the proposed approach combines the optimizing algorithm of Enhanced PSO with the Differential Evolution (DE) for the improvement of computation using parallel process. The implementation and the parallel process are analyzed and discussed to gather relevant data to show the performance enhancement which is better than the existing algorithm.展开更多
In the recent restructured power system scenario and complex market strategy, operation at absolute minimum cost is no longer the only criterion for dispatching electric power. The economic load dispatch (ELD) problem...In the recent restructured power system scenario and complex market strategy, operation at absolute minimum cost is no longer the only criterion for dispatching electric power. The economic load dispatch (ELD) problem which accounts for minimization of both generation cost and power loss is itself a multiple conflicting objective function problem. In this paper, a modified shuffled frog-leaping algorithm (MSFLA), which is an improved version of memetic algorithm, is proposed for solving the ELD problem. It is a relatively new evolutionary method where local search is applied during the evolutionary cycle. The idea of memetic algorithm comes from memes, which unlike genes can adapt themselves. The performance of MSFLA has been shown more efficient than traditional evolutionary algorithms for such type of ELD problem. The application and validity of the proposed algorithm are demonstrated for IEEE 30 bus test system as well as a practical power network of 203 bus 264 lines 23 machines system.展开更多
This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic alg...This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS), where it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept of ε-dominance. To improve the solution quality, local search technique was applied as neighborhood search engine, where it intends to explore the less-crowded area in the current archive to possibly obtain more non-dominated solutions. TOPSIS technique can incorporate relative weights of criterion importance, which has been implemented to identify best compromise solution, which will satisfy the different goals to some extent. Several optimization runs of the proposed approach are carried out on the standard IEEE 30-bus 6-genrator test system. The comparison demonstrates the superiority of the proposed approach and confirms its potential to solve the multiobjective EELD problem.展开更多
A new versatile optimization, the particle swarm optimization based on multi-agent system (MAPSO) is presented. The economic load dispatch (ELD) problem of power system can be solved by the algorithm. By competing and...A new versatile optimization, the particle swarm optimization based on multi-agent system (MAPSO) is presented. The economic load dispatch (ELD) problem of power system can be solved by the algorithm. By competing and cooperating with the randomly selected neighbors, and adjusting its global searching ability and local exploring ability, this algorithm achieves the goal of high convergence precision and speed. To verify the effectiveness of the proposed algorithm, this algorithm is tested by three different ELD cases, including 3, 13 and 40 units IEEE cases, and the experiment results are compared with those tested by other intelligent algorithms in the same cases. The compared results show that feasible solutions can be reached effectively, local optima can be avoided and faster solution can be applied with the proposed algorithm, the algorithm for ELD problem is versatile and efficient.展开更多
In this paper, the efficient population utilization strategy for particle swarm optimization (EPUSPSO) is proposed to solve the economic load dispatch (ELD) problem of power system. This algorithm improves the accurac...In this paper, the efficient population utilization strategy for particle swarm optimization (EPUSPSO) is proposed to solve the economic load dispatch (ELD) problem of power system. This algorithm improves the accuracy and the speed of its convergence by changing the number of particles effectively, and improving the velocity equation and position equation. In order to verify the effectiveness of the algorithm, this algorithm is tested in three different ELD cases of power system include IEEE 3-unit case, 13-unit case, and 40-unit case, and the obtained results are compared with those obtained from other algorithms using the same system parameters. The compared results show that the algorithm can find the optimal solution effectively and accurately, and avoid falling into the local optimal problem;meanwhile, faster speed can be ensured in the case.展开更多
In this paper, a multiple population genetic algorithm (MPGA) is proposed to solve the problem of optimal load dispatch of gas turbine generation units. By introducing multiple populations on the basis of Standard Gen...In this paper, a multiple population genetic algorithm (MPGA) is proposed to solve the problem of optimal load dispatch of gas turbine generation units. By introducing multiple populations on the basis of Standard Genetic Algorithm (SGA), connecting each population through immigrant operator and preserving the best individuals of every generation through elite strategy, MPGA can enhance the efficiency in obtaining the global optimal solution. In this paper, MPGA is applied to optimize the load dispatch of 3×390MW gas turbine units. The results of MPGA calculation are compared with that of equal micro incremental method and AGC instruction. MPGA shows the best performance of optimization under different load conditions. The amount of saved gas consumption in the calculation is up to 2337.45m3N/h, which indicates that the load dispatch optimization of gas turbine units via MPGA approach can be effective.展开更多
With the increasing number of wind farms in power systems, the scheduling of a single wind farm needs to be improved. For this end, this paper proposes an optimal short-term load dispatch strategy for a single wind fa...With the increasing number of wind farms in power systems, the scheduling of a single wind farm needs to be improved. For this end, this paper proposes an optimal short-term load dispatch strategy for a single wind farm. Firstly, considering the large number of wind units and the high dimensionality of the scheduling solutions, we analyze the unit load characteristics, from which we extract the unit load characteristic matrix, and then classify the wind power units with the FCM fuzzy clustering algorithm. Secondly, we define the running loss indicator and action loss indicator. Based on the prediction of wind power and the load instructions, we establish a unit commitment model in wind farm, and solve the model using a combination of the fuzzy clustering algorithm and genetic algorithm, which overcomes the difficulty of the high dimensionality of the solution in the wind farm scheduling problem, to obtain the optimal scheduling strategy. Finally, through the simulation of the scheduling strategy for a 45 MW wind farm, we demonstrate the feasibility and effectiveness of the proposed strategy.展开更多
With the development of renewable energy and the changes in the characteristics of power grid,it is becoming increasingly difficult to balance power supply and demand in space and time.In addition,the requirement for ...With the development of renewable energy and the changes in the characteristics of power grid,it is becoming increasingly difficult to balance power supply and demand in space and time.In addition,the requirement for improved dispatching capability of power grid is increasing.Therefore,the potential of flexible load dispatching should be realized,which can promote the large-scale consumption of renewable energy and the construction of new power grid.Based on the analysis of existing load dispatching studies and the differences in the characteristics of domestic and foreign load dispatchings,a technical architecture and several key technologies are proposed for load resources to participate in power grid dispatching under the new situation,i.e.,the autonomous collaborative control system of load dispatching.This system implements the multi-layer coordinated control of main,distribution and micro grids(load aggregators).Adjustable load resources are aggregated through an aggregator operation platform and connected with a dispatcher load regulator platform to realize real-time data interaction with dispatching agencies as well as the monitoring,con-trol,and marketing of aggregators.It supports the load resources to participate in network-wide dispatching optimization via continuous power adjustment.Several key technologies such as the control mode,load modeling,dispatching strategy,and safety protection are also elaborated.Through the closed-loop control of orderly charging piles and energy storage clusters in the North China Power Grid,the feasibility of the proposed architecture and key technologies is verified.This route has successively supported multiple adjustable load aggregators to partici-pate in the ancillary services market of North China Power Grid for peak-shaving.Finally,the technical challenges of load resources participating in power grid dispatching under the dual carbon goals are discussed and prospected.展开更多
With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to th...With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.展开更多
Economic Load Dispatch (ELD) is a process of scheduling the required load demand among available generation units such that the fuel cost of operation is minimized. The ELD problem is formulated as a nonlinear constra...Economic Load Dispatch (ELD) is a process of scheduling the required load demand among available generation units such that the fuel cost of operation is minimized. The ELD problem is formulated as a nonlinear constrained optimization problem with both equality and inequality constraints. In this paper, two test systems of the ELD problems are solved by adopting the Cuckoo Search (CS) Algorithm. A comparison of obtained simulation results by using the CS is carried out against six other swarm intelligence algorithms: Particle Swarm Optimization, Shuffled Frog Leaping Algorithm, Bacterial Foraging Optimization, Artificial Bee Colony, Harmony Search and Firefly Algorithm. The effectiveness of each swarm intelligence algorithm is demonstrated on a test system comprising three-generators and other containing six-generators. Results denote superiority of the Cuckoo Search Algorithm and confirm its potential to solve the ELD problem.展开更多
综合能源系统(integrated energy system,IES)的效益分析不仅取决于能源供给侧的调度方案,也受到需求侧用能方式的影响。基于此,在IES的需求侧引入柔性负荷响应,以平滑负荷曲线,进一步提升IES的风电消纳能力和经济效益;同时为尽量减小...综合能源系统(integrated energy system,IES)的效益分析不仅取决于能源供给侧的调度方案,也受到需求侧用能方式的影响。基于此,在IES的需求侧引入柔性负荷响应,以平滑负荷曲线,进一步提升IES的风电消纳能力和经济效益;同时为尽量减小供能侧风电出力不确定性的影响、实现调度方案鲁棒性与经济性的均衡,构建了考虑柔性电负荷和柔性热负荷的IES两阶段分布鲁棒优化调度模型:预调度阶段以IES的日前综合调度成本最低为目标;再调度阶段以风电历史数据为基础,寻找最恶劣风电出力概率分布下的最优机组调节方案,并使用列约束生成算法进行求解。最后,采用算例验证了该模型的有效性。展开更多
基金supported by the National Natural Science Foundation of China(Grant 62103101)the Natural Science Foundation of Jiangsu Province of China(Grant BK20210217)+5 种基金the China Postdoctoral Science Foundation(Grant 2022M710680)the National Natural Science Foundation of China(Grant 62273094)the"Zhishan"Scholars Programs of Southeast Universitythe Fundamental Science(Natural Science)General Program of Jiangsu Higher Education Institutions(No.21KJB470020)the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology(No.XTCX202102)the Introduced Talents Scientific Research Start-up Fund Project,Nanjing Institute of Technology(No.YKJ202133).
文摘This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.
基金Project (Nos. 60074040 and 6022506) supported by the NationalNatural Science Foundation of China
文摘A multi-objective particle swarm optimization (MOPSO) approach for multi-objective economic load dispatch problem in power system is presented in this paper. The economic load dispatch problem is a non-linear constrained multi-objective optimization problem. The proposed MOPSO approach handles the problem as a multi-objective problem with competing and non-commensurable fuel cost, emission and system loss objectives and has a diversity-preserving mechanism using an external memory (call “repository”) and a geographically-based approach to find widely different Pareto-optimal solutions. In addition, fuzzy set theory is employed to extract the best compromise solution. Several optimization runs of the proposed MOPSO approach were carried out on the standard IEEE 30-bus test system. The results revealed the capabilities of the proposed MOPSO approach to generate well-distributed Pareto-optimal non-dominated solutions of multi-objective economic load dispatch. Com- parison with Multi-objective Evolutionary Algorithm (MOEA) showed the superiority of the proposed MOPSO approach and confirmed its potential for solving multi-objective economic load dispatch.
基金supported by the National Basic Research Program of China(973 Program,Grant No.2013CB036406)the National Natural Science Foundation of China(Grant No.51179044)the Research Innovation Program for College Graduates in Jiangsu Province of China(Grant No.CXZZ12-0242)
文摘The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases.
文摘In Dynamic Economic Load Dispatch (DELD), optimization and evolution computation become a major part with the strategy for solving the issues. From various algorithms Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms are used to encode in a vector form and in sharing information and both approaches are based on the master-apprentice mechanism for the Dual Evolution Strategy. In order to overcome the challenges like the clustering of PSO, optimization problems and maximum and minimum searching, a new approach is developed with the improvement of searching and efficient process. In this paper, an Enhanced Hybrid Differential Evolution and Particle Swarm Optimization (EHDE-PSO) is proposed with Dynamic Sigmoid Weight using parallel procedures. A hybrid form of the proposed approach combines the optimizing algorithm of Enhanced PSO with the Differential Evolution (DE) for the improvement of computation using parallel process. The implementation and the parallel process are analyzed and discussed to gather relevant data to show the performance enhancement which is better than the existing algorithm.
文摘In the recent restructured power system scenario and complex market strategy, operation at absolute minimum cost is no longer the only criterion for dispatching electric power. The economic load dispatch (ELD) problem which accounts for minimization of both generation cost and power loss is itself a multiple conflicting objective function problem. In this paper, a modified shuffled frog-leaping algorithm (MSFLA), which is an improved version of memetic algorithm, is proposed for solving the ELD problem. It is a relatively new evolutionary method where local search is applied during the evolutionary cycle. The idea of memetic algorithm comes from memes, which unlike genes can adapt themselves. The performance of MSFLA has been shown more efficient than traditional evolutionary algorithms for such type of ELD problem. The application and validity of the proposed algorithm are demonstrated for IEEE 30 bus test system as well as a practical power network of 203 bus 264 lines 23 machines system.
文摘This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS), where it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept of ε-dominance. To improve the solution quality, local search technique was applied as neighborhood search engine, where it intends to explore the less-crowded area in the current archive to possibly obtain more non-dominated solutions. TOPSIS technique can incorporate relative weights of criterion importance, which has been implemented to identify best compromise solution, which will satisfy the different goals to some extent. Several optimization runs of the proposed approach are carried out on the standard IEEE 30-bus 6-genrator test system. The comparison demonstrates the superiority of the proposed approach and confirms its potential to solve the multiobjective EELD problem.
文摘A new versatile optimization, the particle swarm optimization based on multi-agent system (MAPSO) is presented. The economic load dispatch (ELD) problem of power system can be solved by the algorithm. By competing and cooperating with the randomly selected neighbors, and adjusting its global searching ability and local exploring ability, this algorithm achieves the goal of high convergence precision and speed. To verify the effectiveness of the proposed algorithm, this algorithm is tested by three different ELD cases, including 3, 13 and 40 units IEEE cases, and the experiment results are compared with those tested by other intelligent algorithms in the same cases. The compared results show that feasible solutions can be reached effectively, local optima can be avoided and faster solution can be applied with the proposed algorithm, the algorithm for ELD problem is versatile and efficient.
文摘In this paper, the efficient population utilization strategy for particle swarm optimization (EPUSPSO) is proposed to solve the economic load dispatch (ELD) problem of power system. This algorithm improves the accuracy and the speed of its convergence by changing the number of particles effectively, and improving the velocity equation and position equation. In order to verify the effectiveness of the algorithm, this algorithm is tested in three different ELD cases of power system include IEEE 3-unit case, 13-unit case, and 40-unit case, and the obtained results are compared with those obtained from other algorithms using the same system parameters. The compared results show that the algorithm can find the optimal solution effectively and accurately, and avoid falling into the local optimal problem;meanwhile, faster speed can be ensured in the case.
文摘In this paper, a multiple population genetic algorithm (MPGA) is proposed to solve the problem of optimal load dispatch of gas turbine generation units. By introducing multiple populations on the basis of Standard Genetic Algorithm (SGA), connecting each population through immigrant operator and preserving the best individuals of every generation through elite strategy, MPGA can enhance the efficiency in obtaining the global optimal solution. In this paper, MPGA is applied to optimize the load dispatch of 3×390MW gas turbine units. The results of MPGA calculation are compared with that of equal micro incremental method and AGC instruction. MPGA shows the best performance of optimization under different load conditions. The amount of saved gas consumption in the calculation is up to 2337.45m3N/h, which indicates that the load dispatch optimization of gas turbine units via MPGA approach can be effective.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2012CB215203)the National Natural Science Major Fund Project (Grant No. 51036002)
文摘With the increasing number of wind farms in power systems, the scheduling of a single wind farm needs to be improved. For this end, this paper proposes an optimal short-term load dispatch strategy for a single wind farm. Firstly, considering the large number of wind units and the high dimensionality of the scheduling solutions, we analyze the unit load characteristics, from which we extract the unit load characteristic matrix, and then classify the wind power units with the FCM fuzzy clustering algorithm. Secondly, we define the running loss indicator and action loss indicator. Based on the prediction of wind power and the load instructions, we establish a unit commitment model in wind farm, and solve the model using a combination of the fuzzy clustering algorithm and genetic algorithm, which overcomes the difficulty of the high dimensionality of the solution in the wind farm scheduling problem, to obtain the optimal scheduling strategy. Finally, through the simulation of the scheduling strategy for a 45 MW wind farm, we demonstrate the feasibility and effectiveness of the proposed strategy.
基金the Science and Technology Project of State Grid Corporation of China(No.5400-202011441A-0-0-00)。
文摘With the development of renewable energy and the changes in the characteristics of power grid,it is becoming increasingly difficult to balance power supply and demand in space and time.In addition,the requirement for improved dispatching capability of power grid is increasing.Therefore,the potential of flexible load dispatching should be realized,which can promote the large-scale consumption of renewable energy and the construction of new power grid.Based on the analysis of existing load dispatching studies and the differences in the characteristics of domestic and foreign load dispatchings,a technical architecture and several key technologies are proposed for load resources to participate in power grid dispatching under the new situation,i.e.,the autonomous collaborative control system of load dispatching.This system implements the multi-layer coordinated control of main,distribution and micro grids(load aggregators).Adjustable load resources are aggregated through an aggregator operation platform and connected with a dispatcher load regulator platform to realize real-time data interaction with dispatching agencies as well as the monitoring,con-trol,and marketing of aggregators.It supports the load resources to participate in network-wide dispatching optimization via continuous power adjustment.Several key technologies such as the control mode,load modeling,dispatching strategy,and safety protection are also elaborated.Through the closed-loop control of orderly charging piles and energy storage clusters in the North China Power Grid,the feasibility of the proposed architecture and key technologies is verified.This route has successively supported multiple adjustable load aggregators to partici-pate in the ancillary services market of North China Power Grid for peak-shaving.Finally,the technical challenges of load resources participating in power grid dispatching under the dual carbon goals are discussed and prospected.
文摘With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.
基金Fundacao de Amparo a Pesquisa do Estado de Sao Paulo for the financial support(Process FAPESP No 2011/08108-0).
文摘Economic Load Dispatch (ELD) is a process of scheduling the required load demand among available generation units such that the fuel cost of operation is minimized. The ELD problem is formulated as a nonlinear constrained optimization problem with both equality and inequality constraints. In this paper, two test systems of the ELD problems are solved by adopting the Cuckoo Search (CS) Algorithm. A comparison of obtained simulation results by using the CS is carried out against six other swarm intelligence algorithms: Particle Swarm Optimization, Shuffled Frog Leaping Algorithm, Bacterial Foraging Optimization, Artificial Bee Colony, Harmony Search and Firefly Algorithm. The effectiveness of each swarm intelligence algorithm is demonstrated on a test system comprising three-generators and other containing six-generators. Results denote superiority of the Cuckoo Search Algorithm and confirm its potential to solve the ELD problem.
文摘综合能源系统(integrated energy system,IES)的效益分析不仅取决于能源供给侧的调度方案,也受到需求侧用能方式的影响。基于此,在IES的需求侧引入柔性负荷响应,以平滑负荷曲线,进一步提升IES的风电消纳能力和经济效益;同时为尽量减小供能侧风电出力不确定性的影响、实现调度方案鲁棒性与经济性的均衡,构建了考虑柔性电负荷和柔性热负荷的IES两阶段分布鲁棒优化调度模型:预调度阶段以IES的日前综合调度成本最低为目标;再调度阶段以风电历史数据为基础,寻找最恶劣风电出力概率分布下的最优机组调节方案,并使用列约束生成算法进行求解。最后,采用算例验证了该模型的有效性。