The rapid growth of interconnected high performance workstations has produced a new computing paradigm called clustered of workstations computing. In these systems load balance problem is a serious impediment to achie...The rapid growth of interconnected high performance workstations has produced a new computing paradigm called clustered of workstations computing. In these systems load balance problem is a serious impediment to achieve good performance. The main concern of this paper is the implementation of dynamic load balancing algorithm, asynchronous Round Robin (ARR), for balancing workload of parallel tree computation depth-first-search algorithm on Cluster of Heterogeneous Workstations (COW) Many algorithms in artificial intelligence and other areas of computer science are based on depth first search in implicitty defined trees. For these algorithms a load-balancing scheme is required, which is able to evenly distribute parts of an irregularly shaped tree over the workstations with minimal interprocessor communication and without prior knowledge of the tree’s shape. For the (ARR) algorithm only minimal interprocessor communication is needed when necessary and it runs under the MPI (Message passing interface) that allows parallel execution on heterogeneous SUN cluster of workstation platform. The program code is written in C language and executed under UNIX operating system (Solaris version).展开更多
This paper presented an idea to replace the traditionally expensive parallel machines by heterogeneous cluster of workstations. To emphasise the usability of cluster of workstations platform for parallel and distribut...This paper presented an idea to replace the traditionally expensive parallel machines by heterogeneous cluster of workstations. To emphasise the usability of cluster of workstations platform for parallel and distributed computing, also the paper presented the status report on the effort and experiences for the implementation of a dynamic load balancing for parallel tree computation depth first search(DFS) on the cluster of a workstations project. It compared the speedup performance obtained from our platform with that obtained from the traditional one. The speedup results show that cluster of workstations can be a serious alternative to the expensive parallel machines.展开更多
Dynamic task assignment and migration are the key technique to load balancing which plays an important role in the achievement of high performance in distributed computing system. In this paper, we describe the design...Dynamic task assignment and migration are the key technique to load balancing which plays an important role in the achievement of high performance in distributed computing system. In this paper, we describe the design and implementation of an online thread scheduling and migration system (S&M) based on a previous work of LWP -MPI. Experimental results show that performance is enhanced.展开更多
The real problem in cluster of workstations is the changes in workstation power or number of workstations or dynmaic changes in the run time behavior of the application hamper the efficient use of resources. Dynamic l...The real problem in cluster of workstations is the changes in workstation power or number of workstations or dynmaic changes in the run time behavior of the application hamper the efficient use of resources. Dynamic load balancing is a technique for the parallel implementation of problems, which generate unpredictable workloads by migration work units from heavily loaded processor to lightly loaded processors at run time. This paper proposed an efficient load balancing method in which parallel tree computations depth first search (DFS) generates unpredictable, highly imbalance workloads and moves through different phases detectable at run time, where dynamic load balancing strategy is applicable in each phase running under the MPI(message passing interface) and Unix operating system on cluster of workstations parallel platform computing.展开更多
The Internet of Things(IoT)is gaining attention because of its broad applicability,especially by integrating smart devices for massive communication during sensing tasks.IoT-assisted Wireless Sensor Networks(WSN)are s...The Internet of Things(IoT)is gaining attention because of its broad applicability,especially by integrating smart devices for massive communication during sensing tasks.IoT-assisted Wireless Sensor Networks(WSN)are suitable for various applications like industrial monitoring,agriculture,and transportation.In this regard,routing is challenging to nd an efcient path using smart devices for transmitting the packets towards big data repositories while ensuring efcient energy utilization.This paper presents the Robust Cluster Based Routing Protocol(RCBRP)to identify the routing paths where less energy is consumed to enhances the network lifespan.The scheme is presented in six phases to explore ow and communication.We propose the two algorithms:(i)energy-efcient clustering and routing algorithm and (ii)distance and energy consumption calculation algorithm.The scheme consumes less energy and balances the load by clustering the smart devices.Our work is validated through extensive simulation using Matlab.Results elucidate the dominance of the proposed scheme is compared to counterparts in terms of energy consumption,the number of packets received at BS and the number of active and dead nodes.In the future,we shall consider edge computing to analyze the performance of robust clustering.展开更多
文摘The rapid growth of interconnected high performance workstations has produced a new computing paradigm called clustered of workstations computing. In these systems load balance problem is a serious impediment to achieve good performance. The main concern of this paper is the implementation of dynamic load balancing algorithm, asynchronous Round Robin (ARR), for balancing workload of parallel tree computation depth-first-search algorithm on Cluster of Heterogeneous Workstations (COW) Many algorithms in artificial intelligence and other areas of computer science are based on depth first search in implicitty defined trees. For these algorithms a load-balancing scheme is required, which is able to evenly distribute parts of an irregularly shaped tree over the workstations with minimal interprocessor communication and without prior knowledge of the tree’s shape. For the (ARR) algorithm only minimal interprocessor communication is needed when necessary and it runs under the MPI (Message passing interface) that allows parallel execution on heterogeneous SUN cluster of workstation platform. The program code is written in C language and executed under UNIX operating system (Solaris version).
基金National Science Foundation of China(No.60 173 0 3 1)
文摘This paper presented an idea to replace the traditionally expensive parallel machines by heterogeneous cluster of workstations. To emphasise the usability of cluster of workstations platform for parallel and distributed computing, also the paper presented the status report on the effort and experiences for the implementation of a dynamic load balancing for parallel tree computation depth first search(DFS) on the cluster of a workstations project. It compared the speedup performance obtained from our platform with that obtained from the traditional one. The speedup results show that cluster of workstations can be a serious alternative to the expensive parallel machines.
文摘Dynamic task assignment and migration are the key technique to load balancing which plays an important role in the achievement of high performance in distributed computing system. In this paper, we describe the design and implementation of an online thread scheduling and migration system (S&M) based on a previous work of LWP -MPI. Experimental results show that performance is enhanced.
基金Natural Science Foundation of China (No.60 173 0 3 1)
文摘The real problem in cluster of workstations is the changes in workstation power or number of workstations or dynmaic changes in the run time behavior of the application hamper the efficient use of resources. Dynamic load balancing is a technique for the parallel implementation of problems, which generate unpredictable workloads by migration work units from heavily loaded processor to lightly loaded processors at run time. This paper proposed an efficient load balancing method in which parallel tree computations depth first search (DFS) generates unpredictable, highly imbalance workloads and moves through different phases detectable at run time, where dynamic load balancing strategy is applicable in each phase running under the MPI(message passing interface) and Unix operating system on cluster of workstations parallel platform computing.
文摘The Internet of Things(IoT)is gaining attention because of its broad applicability,especially by integrating smart devices for massive communication during sensing tasks.IoT-assisted Wireless Sensor Networks(WSN)are suitable for various applications like industrial monitoring,agriculture,and transportation.In this regard,routing is challenging to nd an efcient path using smart devices for transmitting the packets towards big data repositories while ensuring efcient energy utilization.This paper presents the Robust Cluster Based Routing Protocol(RCBRP)to identify the routing paths where less energy is consumed to enhances the network lifespan.The scheme is presented in six phases to explore ow and communication.We propose the two algorithms:(i)energy-efcient clustering and routing algorithm and (ii)distance and energy consumption calculation algorithm.The scheme consumes less energy and balances the load by clustering the smart devices.Our work is validated through extensive simulation using Matlab.Results elucidate the dominance of the proposed scheme is compared to counterparts in terms of energy consumption,the number of packets received at BS and the number of active and dead nodes.In the future,we shall consider edge computing to analyze the performance of robust clustering.