期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Force Control Compensation Method with Variable Load Stiffness and Damping of the Hydraulic Drive Unit Force Control System 被引量:10
1
作者 KONG Xiangdong BA Kaixian +3 位作者 YU Bin CAO Yuan ZHU Qixin ZHAO Hualong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期454-464,共11页
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force... Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness. 展开更多
关键词 quadruped robot force control system hydraulic drive unit force control compensation method variable load stiffness and damping simulation
下载PDF
Robust Control for Static Loading of Electro-hydraulic Load Simulator with Friction Compensation 被引量:20
2
作者 YAO Jianyong JIAO Zongxia YAO Bin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期954-962,共9页
关键词 electro-hydraulic load simulator robust control friction compensation feedback linearization LuGre model nonlinear control state estimation
原文传递
On the use of positive feedback for improved torque control
3
作者 Houman DALLALI Gustavo A.MEDRANO-CERDA +5 位作者 Michele FOCCHI Thiago BOAVENTURA Marco FRIGERIO Claudio SEMINI Jonas BUCHLI Darwin G.CALDWELL 《Control Theory and Technology》 EI CSCD 2015年第3期266-285,共20页
This paper considers the torque control problem for robots with flexible joints driven by electrical actuators. It is shown that the achievable closed-loop tracking bandwidth using PI torque controllers may be limited... This paper considers the torque control problem for robots with flexible joints driven by electrical actuators. It is shown that the achievable closed-loop tracking bandwidth using PI torque controllers may be limited due to transmission zeros introduced by the load dynamics. This limitation is overcome by using positive feedback from the load motion in unison with PI torque controllers. The positive feedback is given in terms of load velocity, acceleration and jerk. Stability conditions for designing decentralized PI torque controllers are derived in terms of Routh-Hurwitz criteria. Disturbance rejection properties of the closed system are characterized and an analysis is carried out investigating the use of approximate positive feedback by omitting acceleration and/or jerk signals. The results of this paper are illustrated for a two DoF (degrees of freedom) system. Experimental results for a one DoF system are also included. 展开更多
关键词 Force-torque control load motion compensation decentralized control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部