In the current study, the effects of a combined application between micro-vortex generator and boundary layer suction on the flow characteristics of a high-load compressor cascade are investigated. The micro-vortex ge...In the current study, the effects of a combined application between micro-vortex generator and boundary layer suction on the flow characteristics of a high-load compressor cascade are investigated. The micro-vortex generator with a special configuration and the longitudinal suction slot are adopted. The calculated results show that a reverse flow region, which is considered the main reason for occurring stall at 7.9° incidence, grows and collapses rapidly near the leading edge and leads to two critical points occurring on the end-wall with the increasing incidence in the baseline. As the micro-vortex generator is introduced in the baseline cascade, the corner separation is switched to a trailing edge separation by the thrust from the induced vortex. Meanwhile, the occurrence of failure is delayed due to the mixed low energy fluid and main flow. The synergistic effects between the micro-vortex generator and the boundary layer suction on the performance of the cascade are superior to the baseline at all the incidence conditions before the occurrence of failure, and the sudden deterioration of the cascade occurs at 10.3° incidence. The optimal results show that the farther upstream suction position, the lower total pressure loss of the cascade with vortex generator at the near stall condition. Moreover, the induced vortex with a leg can migrate the accumulated low energy fluid backward to delay the occurrence of stall.展开更多
As a reliability quantitative specification, parametric accelerated life testing was used to assess the reliability of a newly designed compressor of a commercial refrigerator subjected to repetitive stresses. A gener...As a reliability quantitative specification, parametric accelerated life testing was used to assess the reliability of a newly designed compressor of a commercial refrigerator subjected to repetitive stresses. A generalized life-stress failure model and new sample size equation with a new load concept were derived starting with the basic refrigeration cycle. The sample size equation with the acceleration factor also enabled the parametric accelerated life testing to quickly evaluate the expected lifetime. The design of this testing should help an engineer uncover the design parameters affecting reliability during the design process of the compressor system. Consequently, it should help companies improve product reliability and avoid recalls due to the product failures in the field. A newly designed compressor in a commercial refrigerator was used as a test case.展开更多
Compressor is an important part of aero engine. In the environment of high temperature and high pressure,compressor blade will suffer from several physical and chemical processes,such as centrifugal force,aerodynamic ...Compressor is an important part of aero engine. In the environment of high temperature and high pressure,compressor blade will suffer from several physical and chemical processes,such as centrifugal force,aerodynamic force vibration and oxidation. These processes will lead compressor blade to fatigue fracture,and at the same time,make negative effects on the engine’ s overall performance. Based on the software ANSYS15. 0,we made strength analysis and modal analysis of compressor blade in this paper. As a result,we got its natural frequencies,relevant modal parameters and vibration mode cloud pictures. After analyzing the influence that centrifugal force made on modal parameters,we predicted the expected damage of the blade. Eventually the analysis results will provide the basis for overall performance evaluation,structural crack detection,fatigue life estimation and strength calculation of aircraft engine compressor.展开更多
To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),...To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),alongside a combined(COM)scheme featuring double EW slots,were investigated.The results reveal that the EW slot,driven by pressure differentials between the pressure and suction sides,can generate an adaptive jet with escalating velocity as the operational load increases.This high-speed jet effectively re-excites the local low-energy fluid,thereby mitigating the corner separation.Notably,the EWS1 slot,positioned near the blade leading edge,exhibits relatively low jet velocities at negative incidence angles,causing jet separation and exacerbating the corner separation.Besides,the EWS2 slot is close to the blade trailing edge,resulting in massive low-energy fluid accumulating and separating before the slot outlet at positive incidence angles.In contrast,the COM scheme emerges as the most effective solution for comprehensive corner separation control.It can significantly reduce the total pressure loss and improve the static pressure coefficient for the ORI blade at 0°-4° incidence angles,while causing minimal negative impact on the aerodynamic performance at negative incidence angles.Therefore,the corner stall is delayed,and the available incidence angle range is broadened from -10°--2°to -10°-4°.This holds substantial promise for advancing the aerodynamic performance,operational stability,and load capacity of future highly loaded compressors.展开更多
作为飞机环控系统与主发动机起动的气源,以目前广泛应用的带负载压气机结构APU(Auxiliary Power Unit)为研究对象,进行引气特性计算模型与计算方法研究。首先介绍了APU结构与引气工作特点,然后分析了建模时喘振控制阀SCV(Surge Control ...作为飞机环控系统与主发动机起动的气源,以目前广泛应用的带负载压气机结构APU(Auxiliary Power Unit)为研究对象,进行引气特性计算模型与计算方法研究。首先介绍了APU结构与引气工作特点,然后分析了建模时喘振控制阀SCV(Surge Control Valve)控制方法与APU共同工作机理,最后采用部件法建立了该类型APU引气计算数学模型。以某型APU为对象进行数值仿真并与实际试车数据比较,计算误差小于3%,表明所采用的建模方法是正确的,所建立的模型能够满足工程需求。展开更多
基金co-supported by the National Natural Science Foundation of China(Grants Nos.51576162 and 51536006)
文摘In the current study, the effects of a combined application between micro-vortex generator and boundary layer suction on the flow characteristics of a high-load compressor cascade are investigated. The micro-vortex generator with a special configuration and the longitudinal suction slot are adopted. The calculated results show that a reverse flow region, which is considered the main reason for occurring stall at 7.9° incidence, grows and collapses rapidly near the leading edge and leads to two critical points occurring on the end-wall with the increasing incidence in the baseline. As the micro-vortex generator is introduced in the baseline cascade, the corner separation is switched to a trailing edge separation by the thrust from the induced vortex. Meanwhile, the occurrence of failure is delayed due to the mixed low energy fluid and main flow. The synergistic effects between the micro-vortex generator and the boundary layer suction on the performance of the cascade are superior to the baseline at all the incidence conditions before the occurrence of failure, and the sudden deterioration of the cascade occurs at 10.3° incidence. The optimal results show that the farther upstream suction position, the lower total pressure loss of the cascade with vortex generator at the near stall condition. Moreover, the induced vortex with a leg can migrate the accumulated low energy fluid backward to delay the occurrence of stall.
文摘As a reliability quantitative specification, parametric accelerated life testing was used to assess the reliability of a newly designed compressor of a commercial refrigerator subjected to repetitive stresses. A generalized life-stress failure model and new sample size equation with a new load concept were derived starting with the basic refrigeration cycle. The sample size equation with the acceleration factor also enabled the parametric accelerated life testing to quickly evaluate the expected lifetime. The design of this testing should help an engineer uncover the design parameters affecting reliability during the design process of the compressor system. Consequently, it should help companies improve product reliability and avoid recalls due to the product failures in the field. A newly designed compressor in a commercial refrigerator was used as a test case.
文摘Compressor is an important part of aero engine. In the environment of high temperature and high pressure,compressor blade will suffer from several physical and chemical processes,such as centrifugal force,aerodynamic force vibration and oxidation. These processes will lead compressor blade to fatigue fracture,and at the same time,make negative effects on the engine’ s overall performance. Based on the software ANSYS15. 0,we made strength analysis and modal analysis of compressor blade in this paper. As a result,we got its natural frequencies,relevant modal parameters and vibration mode cloud pictures. After analyzing the influence that centrifugal force made on modal parameters,we predicted the expected damage of the blade. Eventually the analysis results will provide the basis for overall performance evaluation,structural crack detection,fatigue life estimation and strength calculation of aircraft engine compressor.
基金sponsored by the National Natural Science Foundation of China(No.52106057)the National Major Science and Technology Projects of China(No.2017-Ⅱ-0001-0013)+2 种基金Fundamental Research Funds for the Central Universities of China(No.D5000210483)the Foundation of State Level Key Laboratory of Airfoil and Cascade Aerodynamics of China(Nos.D5150210006 and D5050210015)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University of China(No.CX2023012).
文摘To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),alongside a combined(COM)scheme featuring double EW slots,were investigated.The results reveal that the EW slot,driven by pressure differentials between the pressure and suction sides,can generate an adaptive jet with escalating velocity as the operational load increases.This high-speed jet effectively re-excites the local low-energy fluid,thereby mitigating the corner separation.Notably,the EWS1 slot,positioned near the blade leading edge,exhibits relatively low jet velocities at negative incidence angles,causing jet separation and exacerbating the corner separation.Besides,the EWS2 slot is close to the blade trailing edge,resulting in massive low-energy fluid accumulating and separating before the slot outlet at positive incidence angles.In contrast,the COM scheme emerges as the most effective solution for comprehensive corner separation control.It can significantly reduce the total pressure loss and improve the static pressure coefficient for the ORI blade at 0°-4° incidence angles,while causing minimal negative impact on the aerodynamic performance at negative incidence angles.Therefore,the corner stall is delayed,and the available incidence angle range is broadened from -10°--2°to -10°-4°.This holds substantial promise for advancing the aerodynamic performance,operational stability,and load capacity of future highly loaded compressors.
文摘作为飞机环控系统与主发动机起动的气源,以目前广泛应用的带负载压气机结构APU(Auxiliary Power Unit)为研究对象,进行引气特性计算模型与计算方法研究。首先介绍了APU结构与引气工作特点,然后分析了建模时喘振控制阀SCV(Surge Control Valve)控制方法与APU共同工作机理,最后采用部件法建立了该类型APU引气计算数学模型。以某型APU为对象进行数值仿真并与实际试车数据比较,计算误差小于3%,表明所采用的建模方法是正确的,所建立的模型能够满足工程需求。