期刊文献+
共找到169篇文章
< 1 2 9 >
每页显示 20 50 100
Fatigue Life Evaluation Method for Foundry Crane Metal Structure Considering Load Dynamic Response and Crack Closure Effect 被引量:1
1
作者 Qing Dong Bin He Gening Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第2期525-553,共29页
To compensate for the shortcomings of quasi-static law in anti-fatigue analysis of foundry crane metal structures,the fatigue life evaluation method of foundry crane metal structure considering load dynamic response a... To compensate for the shortcomings of quasi-static law in anti-fatigue analysis of foundry crane metal structures,the fatigue life evaluation method of foundry crane metal structure considering load dynamic response and crack closure effect is proposed.In line with the theory of mechanical vibration,a dynamic model of crane structure during the working cycle is constructed,and dynamic coefficients under diverse actions are analysed.Calculation models of the internal force dynamic change process of dangerous cross-sections and a simulation model of first principal stress-time history are established by using the steel structure design criteria,which is utilised to extract the change of first principal stress of danger points over time.Then,the double-parameter stress spectrum is obtained by the rain flow counting method.The fatigue life calculation formula is corrected by introducing a crack closure parameter that can be calculated by the stress ratio and the effective stress ratio.Under the finite element model imported into Msc.Patran,crack propagation analysis is performed by the growth method in the fatigue integration module Msc.Fatigue.Taking the metal structure of a 100/40t-28.5m foundry crane with track offset as an example,the accuracy of calculation results and the feasibility and applicability of the proposed method are verified by theoretical calculation and finite element simulation,which provide a theoretical basis for improvement of the fatigue resistance design of foundry cranes. 展开更多
关键词 Metal structure of foundry crane load dynamic effect crack closure effect crack propagation fatigue life.
下载PDF
Mechanical behavior and failure mechanisms of rock bolts subjected to static-dynamic loads 被引量:1
2
作者 Hongpu Kang Guiyang Yuan +4 位作者 Linpo Si Fuqiang Gao Jinfu Lou Jinghe Yang Shuangyong Dong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期281-288,共8页
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram... This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency. 展开更多
关键词 Rock bolt PRETENSION Static and dynamic load IMPACT
下载PDF
Energy mechanism of bolt supporting effect to fissured rock under static and dynamic loads in deep coal mines 被引量:1
3
作者 Deyuan Fan Xuesheng Liu +2 位作者 Yunliang Tan Xuebin Li Shenglong Yang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期371-384,共14页
The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured... The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions. 展开更多
关键词 Static and dynamic loads Anchored rock Energy absorption Anchoring angle Engineering verification
下载PDF
Loads and Dynamic Response Characteristic on FPSO Under Internal Solitary Waves
4
作者 ZHANG Rui-rui LI Cui +2 位作者 PU Chun-rong LIU Qian YOU Yun-xiang 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期785-796,共12页
According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response mo... According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio. 展开更多
关键词 internal solitary wave(ISW) dynamic response FPSO dynamic loads tension increment
下载PDF
Novel cyber-physical collaborative detection and localization method against dynamic load altering attacks in smart energy grids
5
作者 Xinyu Wang Xiangjie Wang +2 位作者 Xiaoyuan Luo Xinping Guan Shuzheng Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期362-376,共15页
Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical a... Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs. 展开更多
关键词 Smart energy grids Cyber-physical system dynamic load altering attacks Attack prediction Detection and localization
下载PDF
Effect of dynamic loading orientation on fracture properties of surrounding rocks in twin tunnels
6
作者 Ze Deng Zheming Zhu +3 位作者 Lei Zhou Leijun Ma Jianwei Huang Yao Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期393-409,共17页
For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of ... For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of dynamic loading orientation on the stability of the twin-tunnel,a split Hopkinson pressure bar(SHPB)apparatus was used to conduct a dynamic test on the twin-tunnel specimens.The two tunnels were rotated around the specimen’s center to consider the effect of dynamic loading orientation.LS-DYNA software was used for numerical simulation to reveal the failure properties and stress wave propagation law of the twin-tunnel specimens.The findings indicate that,for a twin-tunnel exposed to a dynamic load from different orientations,the crack initiation position appears most often at the tunnel corner,tunnel spandrel,and tunnel floor.As the impact direction is created by a certain angle(30°,45°,60°,120°,135°,and 150°),the fractures are produced in the middle of the line between the left tunnel corner and the right tunnel spandrel.As the impact loading angle(a)is 90°,the tunnel sustains minimal damage,and only tensile fractures form in the surrounding rocks.The orientation of the impact load could change the stress distribution in the twin-tunnel,and major fractures are more likely to form in areas where the tensile stress is concentrated. 展开更多
关键词 Twin-tunnel dynamic load Split Hopkinson pressure bar(SHPB) Fracture mode Stress distribution Displacement field distribution
下载PDF
Response characteristics of gas pressure under simultaneous static and dynamic load:Implication for coal and gas outburst mechanism 被引量:3
7
作者 Longyong Shu Liang Yuan +3 位作者 Qixian Li Wentao Xue Nannan Zhu Zhengshuai Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期155-171,共17页
Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the... Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the key factors that induce coal and gas outbursts.In this study,first,the coupling relationship between the gas pressure in the coal body ahead of the working face and the dynamic load was investigated using experimental observations,numerical simulations,and mine-site investigations.It was observed that the impact rate of the dynamic load on the gas-bearing coal can significantly change the gas pressure.The faster the impact rate,the speedier the increase in gas pressure.Moreover,the gas pressure rise was faster closer to the impact interface.Subsequently,based on engineering background,we proposed three models of stress and gas pressure distribution in the coal body ahead of the working face:static load,stress disturbance,and dynamic load conditions.Finally,the gas pressure distribution and outburst mechanism were investigated.The high concentration of gas pressure appearing at the coal body ahead of the working face was caused by the dynamic load.The gas pressure first increased gradually to a peak value and then decreased with increasing distance from the working face.The increase in gas pressure plays a major role in outburst initiation by resulting in the ability to more easily reach the critical points needed for outburst initiation.Moreover,the stronger the dynamic load,the greater the outburst initiation risk.The results of this study provide practical guidance for the early warning and prevention of coal and gas outbursts. 展开更多
关键词 Coal and gas outburst Gas pressure dynamic load Outburst mechanism
下载PDF
Damage-ignition mechanism studies on modified propellant with different crosslinking density under dynamic loading
8
作者 Hong-zheng Duan Yan-qing Wu +2 位作者 Xiao Hou Kun Yang Feng-lei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期155-164,共10页
The study of high-energy and low-vulnerability propellants is important for the power performance and safety of solid propellant rocket motors.The modified split Hopkinson pressure bar(SHPB)tests are performed on two ... The study of high-energy and low-vulnerability propellants is important for the power performance and safety of solid propellant rocket motors.The modified split Hopkinson pressure bar(SHPB)tests are performed on two kinds of propellant with different crosslinking density to study the dynamic mechanical responses and damage-ignition mechanism.SHPB apparatus is equipped with a highperformance infrared camera and high-speed camera to capture the deformation,damage-ignition feature and temperature evolution images in the impact process.The results suggested that the mechanical responses and damage-ignition mechanism of the propellants were affected by the strain rates and crosslinking density.The damage-ignition degree is more intense and the reaction occurs earlier with the increase of strain rates.For propellant 1 with higher crosslinking density,the critical ignition strain rate is 4500 s^(-1).Two kinds of propellants show different ignition mechanism,i.e.crack generation,propagation and final fracture for propellant 1 while viscous shear flow for propellant 2.Meanwhile,the SEM images also reveal the difference of damage-ignition mechanism of the two kinds of propellants.Finally,the ignition mechanism under different strain rates and critical ignition strain rate of propellants are further explained by the theoretical calculation of temperature variations. 展开更多
关键词 The modified propellants dynamic loading Mechanical property Damage-ignition mechanism Experimental and theoretical calculation
下载PDF
Dynamic mechanical characteristics of deep Jinping marble in complex stress environments
9
作者 Chendi Lou Heping Xie +6 位作者 Ru Zhang Hai Ren Hao Luo Kun Xiao Yuan Peng Qiang Tan Li Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期630-644,共15页
To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain ... To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth. 展开更多
关键词 Rock mechanics Split-Hopkinson pressure bar Coupled static‒dynamic loading Different depths Holmquist-Johnson-Cook(HJC)model
下载PDF
Experimental Study on Damage Properties of Rocks Under Dynamic Loading 被引量:1
10
作者 杨军 高文学 金乾坤 《Journal of Beijing Institute of Technology》 EI CAS 2000年第3期243-248,共6页
The damage properties of two types of rocks under dynamic loading are studied. The shock induced experiments are done using planar impact technique on the one? stage light gas gun, and the ultrasonic tests on the da... The damage properties of two types of rocks under dynamic loading are studied. The shock induced experiments are done using planar impact technique on the one? stage light gas gun, and the ultrasonic tests on the damaged rocks have been made by use of the ultrasonic pulse? transmission method. The shock induced damage of rock is related to the shock speed and the attenuation coefficient of sonic wave, and the latter reflects the damage degree in rock fairly well. The attenuation coefficient α can be used as main damage parameter for constructing damage model of rock under dynamic loading. 展开更多
关键词 ROCK dynamic loading damage evolution attenuation coefficient
下载PDF
Dynamic load balancing based on restricted multicast tree in triplet-based hierarchical interconnection network
11
作者 刘滨 石峰 +2 位作者 高玉金 计卫星 宋红 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期33-37,共5页
To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve ... To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others. 展开更多
关键词 triplet-based hierarchical interconnection network dynamic load balancing multicast tree
下载PDF
A priority-based dynamic load transfer algorithm for cellular/WLAN integrated networks
12
作者 陈赓 夏玮玮 +1 位作者 许波 沈连丰 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期14-20,共7页
For the integration network of a cellular network and a wireless local area network (WLAN), a priority-based dynamic load transfer (PDLT) algorithm is proposed. The dynamic vertical handoffs by call admission cont... For the integration network of a cellular network and a wireless local area network (WLAN), a priority-based dynamic load transfer (PDLT) algorithm is proposed. The dynamic vertical handoffs by call admission control are jointly determined by the network conditions and the traffic characteristics in combination with the location-condition of mobile terminals. When there is no bandwidth resource available in the cellular network or WLAN, the proposed PDLT algorithm allows an incoming voice call or data call within the overlapping area of the cellular network and the WLAN to be directed to the spare network; meanwhile, by dynamically computing the occupancy of the bandwidth resource, the proposed PDLT algorithm also allows an ongoing voice call or data communication to be transferred to the network with a sufficient bandwidth resource according to the given threshold to balance the number of voice/data calls in the two networks. The analysis results of a two-dimensional Markov model and the simulation results show that the PDLT algorithm can effectively enhance the whole integrated network' s traffic, reduce the blocking probability of new calls and increase the data throughput, and thus decrease the response time for various services. 展开更多
关键词 cellular network WLAN dynamic load transfer blocking probability Markov model
下载PDF
Reflective cracking viscoelastic response of asphalt concrete under dynamic vehicle loading
13
作者 赵岩荆 倪富健 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期391-394,共4页
In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is describe... In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is described by a prony series which is calculated through nonlinear fitting to the creep test data obtained in the laboratory. Based on the viscoelastic theory, the time-temperature equivalence principle, fracture mechanics and the dynamic finite element method, both the Jintegral and the mix-mode stress intensity factor are utilized as fracture evaluation parameters, and a half-sine dynamic loading is used to simulate the vehicle loading. Finally, the mechanical response of the pavement reflective cracking is analyzed under different vehicle speeds, different environmental conditions and various damping factors. The results indicate that increasing either the vehicle speed or the structure damping factor decreases the maximum values of fracture parameters, while the structure temperature has little effect on the fracture parameters. Due to the fact that the vehicle speed can be enhanced by improving the road traffic conditions, and the pavement damping factor can become greater by modifying the components of materials, the development of reflective cracking can be delayed and the asphalt pavement service life can be effectively extended through both of these ways. 展开更多
关键词 asphalt pavement VISCOELASTIC finite element method reflective cracking dynamic vehicle loading
下载PDF
NMR-based damage characterisation of backfill material in host rock under dynamic loading 被引量:22
14
作者 Binglei Li Jiquan Lan +2 位作者 Guangyao Si Guopeng Lin Liuqing Hu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期329-335,共7页
It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution o... It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution of backfilled stopes is critical to maintain the long-term stope stability and ensure safe mining activities. This paper aims to study the damage evolution of the backfill material and its host rock behaviour under three-dimensional(3D) dynamic loading. Using a true-triaxial testing machine, multiple samples of backfill material enclosed by country rock were fabricated and tested under various dynamic loadings with different true-triaxial confining stress conditions. In addition, the nuclear magnetic resonance(NMR) measurement was conducted on the samples before and after exerting static and dynamic loading to obtain their porosity distribution changes. The experiment results suggested that with the increase of the dynamic loading, the porosity of the backfill sample goes through a two-stage process,which shows a slightly linear decrease and then followed by an exponential increase. The research findings can help understand the damage mechanism and fracture development of backfilled stopes and its host rock in deep underground mines, which are constantly subject to the combination of 3D static confining stress and dynamic loading. 展开更多
关键词 dynamic loading Backfill-country rock system True triaxial test Coupled static and dynamic loads Nuclear magnetic resonance(NMR) Damage evolution
下载PDF
Numerical simulation research on response characteristics of surrounding rock for deep super-large section chamber under dynamic and static combined loading condition 被引量:13
15
作者 FAN De-yuan LIU Xue-sheng +3 位作者 TAN Yun-liang SONG Shi-lin NING Jian-guo MA Qing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3544-3566,共23页
The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper us... The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper used the dynamic module of FLAC3D to study the response characteristics of deep super-large section chamber under dynamic and static combined loading condition.Results showed that under the static loading condition,the maximum vertical stress,deformation and failure range are large,where the stress concentration coefficient is 1.64.The maximum roof-to-floor and two-sides deformations are 54.6 mm and 53.1 mm,respectively.Then,under the dynamic and static combined loading condition:(1)The influence of dynamic load frequency on the two-sides is more obvious;(2)The dynamic load amplitude has the greatest influence on the stress concentration degree,and the plastic failure tends to develop to the deeper;(3)With the dynamic load source distance increase,the response of surrounding rock is gradually attenuated.On this basis,empirical equations for each dynamic load conditions were obtained by using regression analysis method,and all correlation coefficients are greater than 0.99.This research provided reference for the supporting design of deep super-large section chamber under same or similar conditions. 展开更多
关键词 deep mining super-larger section chamber static load dynamic load frequency dynamic load amplitude dynamic load source distance
下载PDF
Review:Recent Developments in Dynamic Load Identification for Aerospace Vehicles Considering Multi⁃source Uncertainties 被引量:8
16
作者 WANG Lei LIU Yaru XU Hanying 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第2期271-287,共17页
The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation... The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation directly.By contrast,the technique of dynamic load identification based on the dynamic model and the response information is a feasible access to obtain the dynamic load indirectly.Furthermore,there are multi-source uncertainties which cannot be neglected for complex systems in the load identification process,especially for aerospace vehicles.In this paper,recent developments in the dynamic load identification field for aerospace vehicles considering multi-source uncertainties are reviewed,including the deterministic dynamic load identification and uncertain dynamic load identification.The inversion methods with different principles of concentrated and distributed loads,and the quantification and propagation analysis for multi-source uncertainties are discussed.Eventually,several possibilities remaining to be explored are illustrated in brief. 展开更多
关键词 dynamic load identification concentrated dynamic load distributed dynamic load stochastic load probabilistic uncertainties non-probabilistic uncertainties
下载PDF
Damage and failure rule of rock undergoing uniaxial compressive load and dynamic load 被引量:20
17
作者 左宇军 李夕兵 +3 位作者 周子龙 马春德 张义平 王卫华 《Journal of Central South University of Technology》 EI 2005年第6期742-748,共7页
For understanding the damage and failure rule of rock under different uniaxial compressive loads and dynamic loads, tests on red sandstone were carried out on Instron 1342 electro-servo controlled testing system with ... For understanding the damage and failure rule of rock under different uniaxial compressive loads and dynamic loads, tests on red sandstone were carried out on Instron 1342 electro-servo controlled testing system with different uniaxial compressive loads of 0, 2, 4 and 6 MPa. It is found that peak stress, peak strain, elastic modulus and total strain energy decrease with the increase of static compressive stress. Based on the test results, the mechanism on damage and failure of rock was analyzed, and according to the equivalent strain hypothesis, a new constitutive model of elastic-plastic damage was established, and then the calculated results with the established model were compared with test results to show a good agreement. Furthermore the rule of releasing ratio of damage strain energy was discussed. 展开更多
关键词 uniaxial static compressive load dynamic load DAMAGE constitutive model ENERGY
下载PDF
Research on Propeller Dynamic Load Simulation System of Electric Propulsion Ship 被引量:12
18
作者 黄辉 沈爱弟 褚建新 《China Ocean Engineering》 SCIE EI CSCD 2013年第2期255-263,共9页
A dynamic marine propeller simulation system was developed, which is utilized for meeting the experimental requirement of theory research and engineering design of marine electric propulsion system. By applying an act... A dynamic marine propeller simulation system was developed, which is utilized for meeting the experimental requirement of theory research and engineering design of marine electric propulsion system. By applying an actual ship parameter and its accurate propeller J' -KT' and J' - Kp' curve data, functional experiments based on the simulation system were carried out. The experiment results showed that the system can correctly emulate the propeller characteristics, produce the dynamic and steady performances of the propeller under different navigation modes, and present actual load torque for electric propulsion motor. 展开更多
关键词 electric propulsion ship-propeller model dynamic load emulation torque closed-loop control
下载PDF
Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads 被引量:23
19
作者 XIAO Peng LI Di-yuan +3 位作者 ZHAO Guo-yan ZHU Quan-qi LIU Huan-xin ZHANG Chun-shun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2945-2958,共14页
The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure ... The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions. 展开更多
关键词 split Hopkinson pressure bar(SHPB)system digital image correlation(DIC) coupled static and dynamic loads FLAW crack propagation
下载PDF
Spalling fracture mechanism of granite subjected to dynamic tensile loading 被引量:8
20
作者 Lin-qi HUANG Jun WANG +1 位作者 Aliakbar MOMENI Shao-feng WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第7期2116-2127,共12页
Rocks are likely to undergo spalling failure under dynamic loading.The fracture development and rock failure behaviours were investigated during dynamic tensile loading.Tests were conducted with a split-Hopkinson pres... Rocks are likely to undergo spalling failure under dynamic loading.The fracture development and rock failure behaviours were investigated during dynamic tensile loading.Tests were conducted with a split-Hopkinson pressure bar(SHPB)in four different impact loading conditions.Thin sections near failure surfaces were also made to evaluate the growth patterns of fractures observed by polarizing microscope.Scanning electron microscopy(SEM)was used to observe mineral grains on failure surfaces and to evaluate their response to loading and failure.The results indicate that the number of spalling cracks increases with increase in peak impact loads and that quartz sustains abundant intergranular fracturing.Cleavage planes and their direction relative to loading play a vital role in rock strength and fracturing.Separation along cleavage planes perpendicular to loading without the movement of micaceous minerals parallel to loading appears to be unique to the rock spalling process. 展开更多
关键词 microscopic observation dynamic loading spalling failure mineral properties intercrystalline fracture
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部