Two-dimensional(2D)melting is a fundamental research topic in condensed matter physics,which can also provide guidance on fabricating new functional materials.Nevertheless,our understanding of 2D melting is still far ...Two-dimensional(2D)melting is a fundamental research topic in condensed matter physics,which can also provide guidance on fabricating new functional materials.Nevertheless,our understanding of 2D melting is still far from being complete due to existence of possible complicate transition mechanisms and absence of effective analysis methods.Here,using Monte Carlo simulations,we investigate 2D melting of 60°rhombs which melt from two different surface-fullycoverable crystals,a complex hexagonal crystal(cHX)whose primitive cell contains three rhombs,and a simple rhombic crystal(RB)whose primitive cell contains one rhomb.The melting of both crystals shows a sequence of solid,hexatic in molecular orientation(Hmo),and isotropic phases which obey the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young(BKTHNY)theory.However,local polymorphic configuration(LPC)based analysis reveals different melting mechanisms:the cHX-Hmotransition is driven by the proliferation of point-like defects during which defect-associated LPCs are generated sequentially,whereas the RB-Hmotransition is driven by line defects where defect-associated LPCs are generated simultaneously.These differences result in the observed different solid-Hmotransition points which areφA=0.812 for the cHX-HmoandφA=0.828 for the RB-Hmo.Our work will shed light on the initial-crystal-dependence of 2D melting behavior.展开更多
A combined Ag nanoparticle with an insulating or conductive layer structure has been designed tor molecular detection using surface enhanced Raman scattering microscopy. Optical absorption studies revealed localized s...A combined Ag nanoparticle with an insulating or conductive layer structure has been designed tor molecular detection using surface enhanced Raman scattering microscopy. Optical absorption studies revealed localized surface plasmon resonance, which shows regular red shift with increasing environmental dielectric constant. With the combined structure of surface enhanced Raman scattering substrates and rhodamine 6C as a test molecule, the results in this paper show that the absorption has a linear relationship with the local electromagnetic field for insulating substrates, and the electrical property of the substrate has a non-negligible effect on the intensity of the local electromagnetic field and hence the Raman enhancement.展开更多
The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By vi...The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling,a robust organic/inorganic hybrid interlayer(lithiophilic LiF/LiC_(6)framework hybridized-CF_(2)-O-CF_(2)-chains)was formed atop Li metal.The derived interface contributes to reversible Li plating/stripping behaviors by mitigating side reactions and decreasing the solvation degree at the interface.The Li@CFO||Li@CFO symmetrical cell exhibits a remarkable lifespan for 5,600 h(1.0 mA cm^(-2)and 1.0 mAh cm^(-2))and 1,350 cycles even at a harsh condition(18.0 mA cm^(-2)and 3.0 mAh cm^(-2)).When paired with high-loading LiFePO4 cathodes,the full cell lasts over 450 cycles at 1C with a high-capacity retention of 99.9%.This work provides a new friction-induced strategy for producing high-performance thin LMAs.展开更多
The anionic redox has been widely studied in layered-oxide-cathodes in attempts to achieve highenergy-density for Na-ion batteries(NIBs).It is known that an oxidation state of Mn^(4+) or Ru^(5+) is essential for the a...The anionic redox has been widely studied in layered-oxide-cathodes in attempts to achieve highenergy-density for Na-ion batteries(NIBs).It is known that an oxidation state of Mn^(4+) or Ru^(5+) is essential for the anionic reaction of O^(2-)/O~-to occur during Na^(+) de/intercalation.However,here,we report that the anionic redox can occur in Ru-based layered-oxide-cathodes before full oxidation of Ru^(4+)/Ru^(5+).Combining studies using first-principles calculation and experimental techniques reveals that further Na^(+) deintercalation from P2-Na_(0.33)[Mg_(0.33)Ru_(0.67)]O_(2) is based on anionic oxidation after 0.33 mol Na^(+) deintercalation from P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) with cationic oxidation of Ru^(4+)/Ru^(4.5+).Especially,it is revealed that the only oxygen neighboring 2Mg/1 Ru can participate in the anionic redox during Na^(+) de/intercalation,which implies that the Na-O-Mg arrangement in the P2-Na_(0.33)[M9_(0.33)Ru_(0.67)]O_(2) structure can dramatically lower the thermodynamic stability of the anionic redox than that of cationic redox.Through the O anionic and Ru cationic reaction,P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) exhibits not only a large specific capacity of~172 mA h g^(-1) but also excellent power-capability via facile Na^(+) diffusion and reversible structural change during charge/discharge.These findings suggest a novel strategy that can increase the activity of anionic redox by modulating the local environment around oxygen to develop high-energy-density cathode materials for NIBs.展开更多
The paper is a part of wider investigation related to the application of basic sciences to the sustainable development of society.It deals with the presentation of knowledge to the real estate(fast growing business)ab...The paper is a part of wider investigation related to the application of basic sciences to the sustainable development of society.It deals with the presentation of knowledge to the real estate(fast growing business)about the local natural and man-made hazards in the near vicinity of any structure(inhabitant,recreation area,land,etc.)and their influence to the social safety and human comfort of life.The structure,necessary information and knowledge base for visible or hidden hazards about a guide for the real estate business is included.An example of application the knowledge about seismic hazard and related phenomena simplified to be more available to the non-specialists(such as real estate agents and companies)targeted to Sofia(the largest urban center and capital of Bulgaria)can attract and improve the learning abilities of the real estate for the society’s sake.展开更多
Very recently, the local coordination environment of active sites has been found to strongly influence their performance in electrocatalytic CO_(2) reduction by tuning the intrinsic kinetics of CO_(2) activation and i...Very recently, the local coordination environment of active sites has been found to strongly influence their performance in electrocatalytic CO_(2) reduction by tuning the intrinsic kinetics of CO_(2) activation and intermediate stabilization. It is imperative to elucidate the mechanism for such an influence towards the rational design of efficient catalysts;however, the complex interactions between the multiple factors involved in the system make it challenging to establish a clear structure–performance relationship. In this work, we chose ion-intercalated silver(I)-based coordination networks(AgCNs) with a well-defined structure as a model platform, which enables us to understand the regulation mechanism of counterions as the counterions are the only tuning factor involved in such a system. We prepared two isostructural Ag CNs with different intercalation ions or counterions of BF_(4)^(-) and ClO_(4)^(-)(named as AgCNs-BF_(4) and AgCNs-ClO_(4)) and found that the former has a more competitive CO_(2) electroreduction performance than the latter. AgCNs-BF_(4) achieves the highest Faradaic efficiency for CO_(2) to CO of 87.1% at-1.0 V(vs. RHE) with a higher partial current density, while AgCNs-ClO_(4) exhibits only 77.2% at the same applied potential.Spectroscopic characterizations and theoretical calculation reveal that the presence of BF_(4)^(-)is more favorable for stabilizing the COOH^(*) intermediate by weakening hydrogen bonds, which accounts for the superior activity of Ag CNs-BF_(4).展开更多
Single-atom catalysts have risen significant attention in the realm of green electrocatalytic energy conversion to address energy and environmental sustainability challenges.Transition metal dichalcogenide(TMD)-based ...Single-atom catalysts have risen significant attention in the realm of green electrocatalytic energy conversion to address energy and environmental sustainability challenges.Transition metal dichalcogenide(TMD)-based single-atom catalysts are considered highly effective in electrocatalysis due to the TMDs'notable specific surface area,tunable elemental species and efficient utilization of single atoms.In order to enhance electrocatalytic performance,it is imperative to elaborately engineer the local environment surrounding the active sites of single atoms within TMDs.In this review,we initially explore the effects of synthesis methods on single-atom active sites and the influence of loading of single atoms on catalytic performance for TMDs.The modulation strategies of the local environment surrounding single-atom sites in TMDs are elaborated,including substitution engineering,surface adsorption,vacancies,spatial confinement and dual-atom site strategies.For each modulation strategy,the effects of diverse local environments on various electrocatalytic applications are presented,such as the oxygen evolution reaction,oxygen reduction reaction,nitrogen reduction reaction,CO_(2)reduction reaction and CO oxidation.Ultimately,this study presents a comprehensive overview of the challenges encountered and the potential directions for the advancement of single-atom catalysts based on TMDs in the realm of electrocatalysis.展开更多
The O_(3)-Na_(0.85)Ni_(0.2)Fe_(0.4)Mn_(0.4)O_(2)layered oxide cathode material possesses the advantages of high specific capacity,low cost,and simple synthesis.However,sluggish kinetics and complicated phase transitio...The O_(3)-Na_(0.85)Ni_(0.2)Fe_(0.4)Mn_(0.4)O_(2)layered oxide cathode material possesses the advantages of high specific capacity,low cost,and simple synthesis.However,sluggish kinetics and complicated phase transition caused by the large size difference between Na+and tetrahedral gaps lead to poor rate and cycling performance.Therefore,a scalable and feasible strategy was proposed to modulate local chemical environment by introducing Mg^(2+)and B^(3+)into O_(3)-Na_(0.85)Ni_(0.2)Fe_(0.4)Mn0.4O_(2),which can distinctly improve kinetic transport rate as well as electrochemical performance.The capacity retention of O_(3)-(Na_(0.82)Mg_(0.04))(Ni_(0.2)Fe_(0.4)Mn_(0.4))B_(0.02)O_(2)(NFMB)increases from 43.3%and 12.4%to 89.5%and 89.0%at 1 C and 3 C after 200 cycles,respectively.Moreover,the electrode still delivers high rate capacity of 93.9 mAh/g when current density increases to 10 C.Mg^(2+)ions riveted on Na layer act as a“pillar”to stabilize crystal structure and inhibit structural change during the desodiumization process.B^(3+)ions entering tetrahedral interstice of the TM layer strengthen the TM-O bond,lower Na+diffusion energy barrier and inhibits the slip of TM layer.Furthermore,the assembled full batteries with the modified cathode material deliver a high energy density of 278.2Wh/kg with commercial hard carbon as anode.This work provides a strategy for the modification of high-performance SIB layered oxide materials to develop the next-generation cost-effective energy storage grid systems.展开更多
Mn doping is deemed as a promising strategy to improve the electrochemical performance of the a-Ni(OH)_(2)battery-type supercapacitor electrode.However,the internal structure evolution,the pathways and the dynamics of...Mn doping is deemed as a promising strategy to improve the electrochemical performance of the a-Ni(OH)_(2)battery-type supercapacitor electrode.However,the internal structure evolution,the pathways and the dynamics of the proton/intercalated anion migration,as well as the functioning mechanism of Mn dopant to stabilize the layered structure during cycles remain unclear.Here,we unveil that irreversible oxidization of Mn^(3+)at the initial CV cycles,which will remain as Mn^(4+)in the NiO_(2)slabs after the first oxidization to effectively suppress the phase transformation fromα-Ni(OH)_(2)/γ-NiOOH toβ-Ni(OH)_(2)/β-NiOOH and further maintain the structural integrity of electrode.With a synergistic combination of theoretical calculations and various structural probes including XRD and^(2)H MAS solid state NMR,we decode the structure evolution and dynamics in the initial CV(cyclic voltammetry)cycles,including the absorption/desorption of hydrogen containing species,migration of intercalated anions/water molecules and the change of interlayer space.This present work elucidates a close relationship between doping chemistry and structural reliability,paving a novel way of reengineering supercapacitor electrode materials.展开更多
Fe-N-C catalysts represent very promising cathode catalysts for polymer electrolyte fuel cells,owing to their outstanding activity for the oxygen reduction reaction(ORR),especially in alkaline media.In this review,we ...Fe-N-C catalysts represent very promising cathode catalysts for polymer electrolyte fuel cells,owing to their outstanding activity for the oxygen reduction reaction(ORR),especially in alkaline media.In this review,we summarize recent advances in the design and synthesis of Fe-N-C catalysts rich in highly dispersed FeNx active sites.Special emphasis is placed on emerging strategies for tuning the electronic structure of the Fe atoms to enhance the ORR activity,and also maximizing the surface concentration of FeNx sites that are catalytically accessible during ORR.While great progress has been made over the past 5 years in the development of Fe-N-C catalyst for ORR,significant technical obstacles still need to be overcome to enable the large-scale application of Fe-N-C materials as cathode catalysts in real-world fuel cells.展开更多
In this study,the support effects on the Pd-catalyzed semi-hydrogenation of acetylene have been investigated from the structural and kinetic perspectives.According to the results of kinetic analysis and X-ray photoele...In this study,the support effects on the Pd-catalyzed semi-hydrogenation of acetylene have been investigated from the structural and kinetic perspectives.According to the results of kinetic analysis and X-ray photoelectron spectroscopy,hydrogen temperature-programmed reduction,temperature-programmed hydride decomposition,and in situ X-ray diffraction measurements,using carbon nanotubes as support for Pd nanocatalysts with various sizes instead of a-Al_(2)O_(3) decreases the Pd^(0)3d binding energy and suppresses the formation of undesirable palladium hydride species,thus increasing the ethylene yield.Furthermore,X-ray absorption spectroscopy,high-resolution transmission electron microscopy,and C_(2)H_(4) temperature-programmed desorption studies combined with density-functional theory calculations reveal the existence of a unique Pd local environment,containing subsurface carbon atoms,that produces positive geometric effects on the acetylene conversion reaction.Therefore,tailoring the Pd local environment and electronic properties represents an effective strategy for the fabrication and design of highly active and selective Pd semi-hydrogenation catalysts.展开更多
A new sound source localization method with sound speed compensation is proposed to reduce the wind influence on the performance of conventional TDOA (Time Difference of Arrival) algorithms. First, the sound speed i...A new sound source localization method with sound speed compensation is proposed to reduce the wind influence on the performance of conventional TDOA (Time Difference of Arrival) algorithms. First, the sound speed is described as a set of functions of the unknown source location, to approximate the acoustic velocity field distribution in the wind field. Then, they are introduced into the TDOA algorithm, to construct nonlinear equations. Finally, the particle swarm optimization algorithm is used to estimate the source location. The simulation results show that the proposed algorithm can significantly improve the localization accuracy for different wind velocities, source locations and test area sizes. The experimental results show that the proposed method can reduce localization errors to about 40% of the original error in a four nodes localization system.展开更多
Electrochemical CO_(2)reduction is a typical surface-mediated reaction,with its reaction kinetics and product distributions largely dependent on the dynamic evolution of reactive species at the cathode–catholyte inte...Electrochemical CO_(2)reduction is a typical surface-mediated reaction,with its reaction kinetics and product distributions largely dependent on the dynamic evolution of reactive species at the cathode–catholyte interface and on the resultant mass transport within the hydrodynamic boundary layer in the vicinity of the cathode.To resolve the complex local reaction environment of branching CO_(2)reduction pathways,we here present a dif-ferential electrochemical mass spectroscopic(DEMS)approach for Cu electrodes to investigate CO_(2)mass trans-port,the local concentration gradients of buffering anions,and the Cu surface topology effects on CO_(2)electrolysis selectivity at a temporal resolution of~400 ms.As a proof of concept,these tuning knobs were validated on an anion exchange membrane electrolyzer,which delivered a Faradaic efficiency of up to 40.4%and a partial current density of 121 mA cm^(-2)for CO_(2)-to-C_(2)H_(4)valorization.This methodology,which bridges the study of fundamental surface electrochemistry and the upgrading of practical electrolyzer performance,could be of general interest in helping to achieve a sustainable circular carbon economy.展开更多
Single-atom catalysts(SACs)with M-N_(4)structure have drawn significant attention due to the facile preparation,maximum atom efficiency,unique electronic properties,uniform active sites,and excellent activity.Such cat...Single-atom catalysts(SACs)with M-N_(4)structure have drawn significant attention due to the facile preparation,maximum atom efficiency,unique electronic properties,uniform active sites,and excellent activity.Such catalysts integrated the merits of traditional homogeneous and heterogeneous catalysts effectively solve the cost,activity,and reuse problems.More importantly,the M-N_(4)structure is flexible and other species like atoms,groups,and particles can be added to precisely control the local environment of M-N_(4)to further improve the catalytic performance.Although unprecedented progress has been made,it remains difficulties in the rational design and controllable synthesis of a suitable SAC for a certain application.This review introduces the progress of M-N_(4)catalysts and summarizes the strategies to modulate the M-N_(4)structure,including changing the coordination number,tailoring the coordination structure,coordinating with groups,creating dual-atom catalysts(DACs),and coexisting of SAC with DAC and cluster.Special emphasis is placed on the preparation,structure characterization,and reaction mechanism of M-N_(4)-derived catalysts.Finally,the current challenges of these catalysts are also discussed to provide guidelines for the future design of efficient catalysts.展开更多
Indoor thermal comfort is essential as it improves living standards.Activity scenarios of personnel are in the process of a dynamic change.In most interior spaces with fixed working stations,people directly blown by c...Indoor thermal comfort is essential as it improves living standards.Activity scenarios of personnel are in the process of a dynamic change.In most interior spaces with fixed working stations,people directly blown by cold air have a poor thermal experience.Therefore,to meet the differentiated environmental demands,one challenge is to explore novel ventilation strategies to satisfy the changing environmental needs.An adaptive strategy,multi-vent module-based adaptive ventilation(MAV),was designed to increase the adjustability of air distribution and better adapt to variable demands.A classroom was chosen as a representative model with multiple scenarios during its use.Simulations were conducted to verify the three-level control effect of MAV on improving the thermal environment.The results revealed that different vent solutions create different airflow patterns and thermal environments,which can be matched to the scenarios.The scale for ventilation efficiency No.4,which measured the influence scope of supply air,was used to evaluate the zoning division control in MAV.The space under the charge of a concerned MAV module showed a higher SVE4 than that at other zones.This implied that the zoning division can be effectively implemented.Thermal comfort measured using the air diffusion performance index,predicted mean vote,and draught rate showed that the application of MAV is better than that of the fixed MV mode,and the discomfort experienced when exposed to cold air can be avoided.It is believed that these results will help extend the research of adaptive ventilation strategies.展开更多
Cardiovascular stent restenosis remains a major challenge in interventional treatment of cardiovascular occlusive disease.Although the changes in arterial mechanical environment due to stent implantation are the main ...Cardiovascular stent restenosis remains a major challenge in interventional treatment of cardiovascular occlusive disease.Although the changes in arterial mechanical environment due to stent implantation are the main causes of the initiation of restenosis and thrombosis,the mechanisms that cause this initiation are still not fully understood.In this article,we reviewed the studies on the issue of stent-induced alterations in arterial mechanical environment and discussed their roles in stent restenosis and late thrombosis from three aspects:(i)the interaction of the stent with host blood vessel,involve the response of vascular wall,the mechanism of mechanical signal transmission,the process of re-endothelialization and late thrombosis;(ii)the changes of hemodynamics in the lumen of the vascular segment and(iii)the changes of mechanical microenvironment within the vascular segment wall due to stent implantation.This review has summarized and analyzed current work in order to better solve the two main problems after stent implantation,namely in stent restenosis and late thrombosis,meanwhile propose the deficiencies of current work for future reference.展开更多
ZnO films containing Er and Ge nanocrystals(nc-Ge) were synthesized and their photoluminescence(PL) properties were studied. Visible and near-infrared PL intensities are found to be greatly increased in nc-Ge-containi...ZnO films containing Er and Ge nanocrystals(nc-Ge) were synthesized and their photoluminescence(PL) properties were studied. Visible and near-infrared PL intensities are found to be greatly increased in nc-Ge-containing film. Er-related 1.54 μm emission has been investigated under several excitation conditions upon different kinds of Ge, Er codoped ZnO thin films. 1.54 μm PL enhancement accompanied by the appearance of nc-Ge implies a significant correlation between nc-Ge and PL emission of Er^(3+). The increased intensity of 1.54 μm in Ge:Er:ZnO film is considered to come from the joint effect of the local potential distortion around Er^(3+)and the possibleenergy transfer from nc-Ge to Er^(3+).展开更多
To date,copper-based catalysts are one of the most prominent catalysts that can electrochemically reduce CO_(2)towards highvalue fuels or chemicals,such as ethylene,ethanol,and acetic acid.However,the chemically activ...To date,copper-based catalysts are one of the most prominent catalysts that can electrochemically reduce CO_(2)towards highvalue fuels or chemicals,such as ethylene,ethanol,and acetic acid.However,the chemically active feature of Cu-based catalysts hinders the understanding of the intrinsic catalytic active sites during the initial and the operative processes of electrochemical CO_(2)reduction(CO_(2)RR).The identification and engineering of active sites during the dynamic evolution of catalysts are thereby vital to further improve the activity,selectivity,and durability of Cu-based catalysts for high-performance CO_(2)RR.In this regard,four triggers for the dynamic evolution of catalysts were introduced in detail.Afterward,three typical active-site theories during the dynamic reconstruction of catalysts were discussed.In addition,the strategies in catalyst design were summarized according to the latest reports of Cu-based catalysts for CO_(2)RR,including the tuning of electronic structure,controlling of the external potential,and regulation of local catalytic environment.Finally,the conclusions and perspectives were provided to inspire more investigations and studies on the intrinsic active sites during the dynamic evolution of catalysts,which could promote the optimization of the catalyst system to further improve the performance of CO_(2)RR.展开更多
Electroreduction of CO_(2) into value-added chemicals and fuels utilizing renewable electricity offers a sustainable way to meet the carbon-neutral goal and a viable solution for the storage of intermittent green ener...Electroreduction of CO_(2) into value-added chemicals and fuels utilizing renewable electricity offers a sustainable way to meet the carbon-neutral goal and a viable solution for the storage of intermittent green energy sources.At the core of this technology is the development of electrocatalysts to accelerate the redox kinetics of CO_(2) reduction reactions(CO_(2)RR)toward high targeted-product yield at minimal energy input.This perspective focuses on a unique category of CO_(2)RR electrocatalysts embodying both inorganic and organic components to synergistically promote the reaction activity,selectivity and stability.First,we summarize recent progress on the design and fabrication of organic/inorganic hybrids CO_(2)RR electrocatalysts,with special attention to the assembly protocols and structural configurations.We then carry out a comprehensive discussion on the mechanistic understanding of CO_(2)RR processes tackled jointly by the inorganic and organic phases,with respect to the regulation of mass and charge transport,modification of double-layer configuration,tailoring of intermediates adsorption,and establishment of tandem pathways.At the end,we outline future challenges in the rational design of organic/inorganic hybrids for CO_(2)RR and further extend the scope to the device level.We hope this work could incentivize more research interests to construct organic/inorganic hybrids for mobilizing electrocatalytic CO_(2)RR towards industrialization.展开更多
Oxyfluoride borosilicate glass with the molar composition of 60SiO2-15B2O3- 15Na2O-8CaF2-2NaF-0.25Eu2O3 was synthesized lay a traditional glass melting method. Glass ceramics containing CaF2 nanocrystals were prepared...Oxyfluoride borosilicate glass with the molar composition of 60SiO2-15B2O3- 15Na2O-8CaF2-2NaF-0.25Eu2O3 was synthesized lay a traditional glass melting method. Glass ceramics containing CaF2 nanocrystals were prepared by heat treating the glass samples at a temperature in the range of 6204580 ℃. The results of X-ray diffraction (XRD) indicated that the average crystallite size and the lattice constant of CaF2 nanocrystals increased with the heat treatment temperature increasing. The luminescence spectra showed that the emission intensity of Eu3+ doped glass ceramics was stronger than that of the glass matrix, and increased with the heat treatment temperature increasing. The left edge of excitation band shifted to shorter wavelength in the glass ceramics. The local environments of Eu3+ ions in the glass and glass ceramics were different.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874277,21621004,12104453,and 12090054)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33030300)
文摘Two-dimensional(2D)melting is a fundamental research topic in condensed matter physics,which can also provide guidance on fabricating new functional materials.Nevertheless,our understanding of 2D melting is still far from being complete due to existence of possible complicate transition mechanisms and absence of effective analysis methods.Here,using Monte Carlo simulations,we investigate 2D melting of 60°rhombs which melt from two different surface-fullycoverable crystals,a complex hexagonal crystal(cHX)whose primitive cell contains three rhombs,and a simple rhombic crystal(RB)whose primitive cell contains one rhomb.The melting of both crystals shows a sequence of solid,hexatic in molecular orientation(Hmo),and isotropic phases which obey the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young(BKTHNY)theory.However,local polymorphic configuration(LPC)based analysis reveals different melting mechanisms:the cHX-Hmotransition is driven by the proliferation of point-like defects during which defect-associated LPCs are generated sequentially,whereas the RB-Hmotransition is driven by line defects where defect-associated LPCs are generated simultaneously.These differences result in the observed different solid-Hmotransition points which areφA=0.812 for the cHX-HmoandφA=0.828 for the RB-Hmo.Our work will shed light on the initial-crystal-dependence of 2D melting behavior.
基金Project supported by Hi-Tech Research and Development Program of China(Grant Nos.2007AA05Z436 and 2009AA050602)Science and Technology Foundation of Tianjin(Grant No.08ZCKFGX03500)+3 种基金National Basic Research Program of China(Grant Nos.2006CB202602 and 2006CB202603)National Natural Science Foundation of China(Grant No.60976051)International Cooperation Project between China-Greece Government(Grant Nos.2006DFA62390 and 2009DFA62580)Program for New Century Excellent Talents in University of China(Grant No.NCET-08-0295)
文摘A combined Ag nanoparticle with an insulating or conductive layer structure has been designed tor molecular detection using surface enhanced Raman scattering microscopy. Optical absorption studies revealed localized surface plasmon resonance, which shows regular red shift with increasing environmental dielectric constant. With the combined structure of surface enhanced Raman scattering substrates and rhodamine 6C as a test molecule, the results in this paper show that the absorption has a linear relationship with the local electromagnetic field for insulating substrates, and the electrical property of the substrate has a non-negligible effect on the intensity of the local electromagnetic field and hence the Raman enhancement.
基金This work was supported by the National Natural Science Foundation of China(U1904216 and U22A20141)the Natural Science Foundation of Changsha City(kq2208258).
文摘The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling,a robust organic/inorganic hybrid interlayer(lithiophilic LiF/LiC_(6)framework hybridized-CF_(2)-O-CF_(2)-chains)was formed atop Li metal.The derived interface contributes to reversible Li plating/stripping behaviors by mitigating side reactions and decreasing the solvation degree at the interface.The Li@CFO||Li@CFO symmetrical cell exhibits a remarkable lifespan for 5,600 h(1.0 mA cm^(-2)and 1.0 mAh cm^(-2))and 1,350 cycles even at a harsh condition(18.0 mA cm^(-2)and 3.0 mAh cm^(-2)).When paired with high-loading LiFePO4 cathodes,the full cell lasts over 450 cycles at 1C with a high-capacity retention of 99.9%.This work provides a new friction-induced strategy for producing high-performance thin LMAs.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1A2C1014280)supported by the “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-004)+1 种基金the Fundamental Research Program of the Korea Institute of Material Science (KIMS) (PNK9370)the calculation resources were supported by the Supercomputing Center in Korea Institute of Science and Technology Information (KISTI) (KSC-2022-CRE-0030)。
文摘The anionic redox has been widely studied in layered-oxide-cathodes in attempts to achieve highenergy-density for Na-ion batteries(NIBs).It is known that an oxidation state of Mn^(4+) or Ru^(5+) is essential for the anionic reaction of O^(2-)/O~-to occur during Na^(+) de/intercalation.However,here,we report that the anionic redox can occur in Ru-based layered-oxide-cathodes before full oxidation of Ru^(4+)/Ru^(5+).Combining studies using first-principles calculation and experimental techniques reveals that further Na^(+) deintercalation from P2-Na_(0.33)[Mg_(0.33)Ru_(0.67)]O_(2) is based on anionic oxidation after 0.33 mol Na^(+) deintercalation from P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) with cationic oxidation of Ru^(4+)/Ru^(4.5+).Especially,it is revealed that the only oxygen neighboring 2Mg/1 Ru can participate in the anionic redox during Na^(+) de/intercalation,which implies that the Na-O-Mg arrangement in the P2-Na_(0.33)[M9_(0.33)Ru_(0.67)]O_(2) structure can dramatically lower the thermodynamic stability of the anionic redox than that of cationic redox.Through the O anionic and Ru cationic reaction,P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) exhibits not only a large specific capacity of~172 mA h g^(-1) but also excellent power-capability via facile Na^(+) diffusion and reversible structural change during charge/discharge.These findings suggest a novel strategy that can increase the activity of anionic redox by modulating the local environment around oxygen to develop high-energy-density cathode materials for NIBs.
文摘The paper is a part of wider investigation related to the application of basic sciences to the sustainable development of society.It deals with the presentation of knowledge to the real estate(fast growing business)about the local natural and man-made hazards in the near vicinity of any structure(inhabitant,recreation area,land,etc.)and their influence to the social safety and human comfort of life.The structure,necessary information and knowledge base for visible or hidden hazards about a guide for the real estate business is included.An example of application the knowledge about seismic hazard and related phenomena simplified to be more available to the non-specialists(such as real estate agents and companies)targeted to Sofia(the largest urban center and capital of Bulgaria)can attract and improve the learning abilities of the real estate for the society’s sake.
基金supported by financial support in part by NSFC (91961106, 51902253, 21725102)Anhui Provincial Natural Science Foundation (Grant 2108085MB46)+1 种基金Key Project of Youth Elite Support Plan in Universities of Anhui Province (Grant gxyqZD2021121)Shaanxi Provincial Natural Science Foundation (2020JQ-778)。
文摘Very recently, the local coordination environment of active sites has been found to strongly influence their performance in electrocatalytic CO_(2) reduction by tuning the intrinsic kinetics of CO_(2) activation and intermediate stabilization. It is imperative to elucidate the mechanism for such an influence towards the rational design of efficient catalysts;however, the complex interactions between the multiple factors involved in the system make it challenging to establish a clear structure–performance relationship. In this work, we chose ion-intercalated silver(I)-based coordination networks(AgCNs) with a well-defined structure as a model platform, which enables us to understand the regulation mechanism of counterions as the counterions are the only tuning factor involved in such a system. We prepared two isostructural Ag CNs with different intercalation ions or counterions of BF_(4)^(-) and ClO_(4)^(-)(named as AgCNs-BF_(4) and AgCNs-ClO_(4)) and found that the former has a more competitive CO_(2) electroreduction performance than the latter. AgCNs-BF_(4) achieves the highest Faradaic efficiency for CO_(2) to CO of 87.1% at-1.0 V(vs. RHE) with a higher partial current density, while AgCNs-ClO_(4) exhibits only 77.2% at the same applied potential.Spectroscopic characterizations and theoretical calculation reveal that the presence of BF_(4)^(-)is more favorable for stabilizing the COOH^(*) intermediate by weakening hydrogen bonds, which accounts for the superior activity of Ag CNs-BF_(4).
基金supported by the“Teli Young Scholar”ProgramTechnology Innovation Program of Beijing Institute of Technology+2 种基金“Xiaomi Scholar”Program“Langyue”ProgramBeijing Municipal Natural Science Foundation(No.2232023)。
文摘Single-atom catalysts have risen significant attention in the realm of green electrocatalytic energy conversion to address energy and environmental sustainability challenges.Transition metal dichalcogenide(TMD)-based single-atom catalysts are considered highly effective in electrocatalysis due to the TMDs'notable specific surface area,tunable elemental species and efficient utilization of single atoms.In order to enhance electrocatalytic performance,it is imperative to elaborately engineer the local environment surrounding the active sites of single atoms within TMDs.In this review,we initially explore the effects of synthesis methods on single-atom active sites and the influence of loading of single atoms on catalytic performance for TMDs.The modulation strategies of the local environment surrounding single-atom sites in TMDs are elaborated,including substitution engineering,surface adsorption,vacancies,spatial confinement and dual-atom site strategies.For each modulation strategy,the effects of diverse local environments on various electrocatalytic applications are presented,such as the oxygen evolution reaction,oxygen reduction reaction,nitrogen reduction reaction,CO_(2)reduction reaction and CO oxidation.Ultimately,this study presents a comprehensive overview of the challenges encountered and the potential directions for the advancement of single-atom catalysts based on TMDs in the realm of electrocatalysis.
基金supported by National Natural Science Foundation(Nos.52364035,52364036 and U23A20577)Guangxi Natural Science Foundation(Nos.2022GXNSFAA035610 and 2022GXNSFAA035471)Guangxi Science and Technology Base and Talent Project(No.GUIKE AD23026038).
文摘The O_(3)-Na_(0.85)Ni_(0.2)Fe_(0.4)Mn_(0.4)O_(2)layered oxide cathode material possesses the advantages of high specific capacity,low cost,and simple synthesis.However,sluggish kinetics and complicated phase transition caused by the large size difference between Na+and tetrahedral gaps lead to poor rate and cycling performance.Therefore,a scalable and feasible strategy was proposed to modulate local chemical environment by introducing Mg^(2+)and B^(3+)into O_(3)-Na_(0.85)Ni_(0.2)Fe_(0.4)Mn0.4O_(2),which can distinctly improve kinetic transport rate as well as electrochemical performance.The capacity retention of O_(3)-(Na_(0.82)Mg_(0.04))(Ni_(0.2)Fe_(0.4)Mn_(0.4))B_(0.02)O_(2)(NFMB)increases from 43.3%and 12.4%to 89.5%and 89.0%at 1 C and 3 C after 200 cycles,respectively.Moreover,the electrode still delivers high rate capacity of 93.9 mAh/g when current density increases to 10 C.Mg^(2+)ions riveted on Na layer act as a“pillar”to stabilize crystal structure and inhibit structural change during the desodiumization process.B^(3+)ions entering tetrahedral interstice of the TM layer strengthen the TM-O bond,lower Na+diffusion energy barrier and inhibits the slip of TM layer.Furthermore,the assembled full batteries with the modified cathode material deliver a high energy density of 278.2Wh/kg with commercial hard carbon as anode.This work provides a strategy for the modification of high-performance SIB layered oxide materials to develop the next-generation cost-effective energy storage grid systems.
基金supported by the National Natural Science Foundation of China(Grant No.21673065,No.21403045,No.21611130177)。
文摘Mn doping is deemed as a promising strategy to improve the electrochemical performance of the a-Ni(OH)_(2)battery-type supercapacitor electrode.However,the internal structure evolution,the pathways and the dynamics of the proton/intercalated anion migration,as well as the functioning mechanism of Mn dopant to stabilize the layered structure during cycles remain unclear.Here,we unveil that irreversible oxidization of Mn^(3+)at the initial CV cycles,which will remain as Mn^(4+)in the NiO_(2)slabs after the first oxidization to effectively suppress the phase transformation fromα-Ni(OH)_(2)/γ-NiOOH toβ-Ni(OH)_(2)/β-NiOOH and further maintain the structural integrity of electrode.With a synergistic combination of theoretical calculations and various structural probes including XRD and^(2)H MAS solid state NMR,we decode the structure evolution and dynamics in the initial CV(cyclic voltammetry)cycles,including the absorption/desorption of hydrogen containing species,migration of intercalated anions/water molecules and the change of interlayer space.This present work elucidates a close relationship between doping chemistry and structural reliability,paving a novel way of reengineering supercapacitor electrode materials.
基金support from the Ministry of Business,Innovation and Employment for a Catalyst Fund grant(MAUX 1609)the University of Auckland Faculty Research Development Fund,the MacDiarmid Institute for Advanced Materials and Nanotechnology,and a generous Philanthropic donation from Greg and Kathryn Trounson.The authors are also grateful for financial support from the National Key Projects for Fundamental Research and Development of China(2017YFA0206904,2017YFA0206900)+1 种基金the National Natural Science Foundation of China(51825205,51772305,21871279)the Beijing Natural Science Foundation(2191002).
文摘Fe-N-C catalysts represent very promising cathode catalysts for polymer electrolyte fuel cells,owing to their outstanding activity for the oxygen reduction reaction(ORR),especially in alkaline media.In this review,we summarize recent advances in the design and synthesis of Fe-N-C catalysts rich in highly dispersed FeNx active sites.Special emphasis is placed on emerging strategies for tuning the electronic structure of the Fe atoms to enhance the ORR activity,and also maximizing the surface concentration of FeNx sites that are catalytically accessible during ORR.While great progress has been made over the past 5 years in the development of Fe-N-C catalyst for ORR,significant technical obstacles still need to be overcome to enable the large-scale application of Fe-N-C materials as cathode catalysts in real-world fuel cells.
基金This work was financially supported by the Natural Science Foundation of China(21922803,21776077,and 22008067)the Innovation Program of Shanghai Municipal Education Commission,the Shanghai Natural Science Foundation(17ZR1407300 and 17ZR1407500)+4 种基金the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,the Shanghai Rising-Star Program(17QA1401200)the China Postdoctoral Science Foundation(2020M681202)the Open Project of State Key Laboratory of Chemical Engineering(SKLChe-15C03)the State Key Laboratory of Organic-Inorganic Composites(oic-201801007)the Fundamental Research Funds for the Central Universities(222201718003).
文摘In this study,the support effects on the Pd-catalyzed semi-hydrogenation of acetylene have been investigated from the structural and kinetic perspectives.According to the results of kinetic analysis and X-ray photoelectron spectroscopy,hydrogen temperature-programmed reduction,temperature-programmed hydride decomposition,and in situ X-ray diffraction measurements,using carbon nanotubes as support for Pd nanocatalysts with various sizes instead of a-Al_(2)O_(3) decreases the Pd^(0)3d binding energy and suppresses the formation of undesirable palladium hydride species,thus increasing the ethylene yield.Furthermore,X-ray absorption spectroscopy,high-resolution transmission electron microscopy,and C_(2)H_(4) temperature-programmed desorption studies combined with density-functional theory calculations reveal the existence of a unique Pd local environment,containing subsurface carbon atoms,that produces positive geometric effects on the acetylene conversion reaction.Therefore,tailoring the Pd local environment and electronic properties represents an effective strategy for the fabrication and design of highly active and selective Pd semi-hydrogenation catalysts.
基金supported by the National Natural Science Fundation of China(61501374)Underwater Information and Control Key Laboratory Fundation(9140C230310150C23102)
文摘A new sound source localization method with sound speed compensation is proposed to reduce the wind influence on the performance of conventional TDOA (Time Difference of Arrival) algorithms. First, the sound speed is described as a set of functions of the unknown source location, to approximate the acoustic velocity field distribution in the wind field. Then, they are introduced into the TDOA algorithm, to construct nonlinear equations. Finally, the particle swarm optimization algorithm is used to estimate the source location. The simulation results show that the proposed algorithm can significantly improve the localization accuracy for different wind velocities, source locations and test area sizes. The experimental results show that the proposed method can reduce localization errors to about 40% of the original error in a four nodes localization system.
基金supported by the National Key R&D Program of China(2022YFB4102000,2022YFA1505100,2022YFA1503803)the NSFC(22002088)+1 种基金the Shanghai Sailing Program(20YF1420500)the Shanghai Science and Technology Innovation Action Plan(22dz1205500).
文摘Electrochemical CO_(2)reduction is a typical surface-mediated reaction,with its reaction kinetics and product distributions largely dependent on the dynamic evolution of reactive species at the cathode–catholyte interface and on the resultant mass transport within the hydrodynamic boundary layer in the vicinity of the cathode.To resolve the complex local reaction environment of branching CO_(2)reduction pathways,we here present a dif-ferential electrochemical mass spectroscopic(DEMS)approach for Cu electrodes to investigate CO_(2)mass trans-port,the local concentration gradients of buffering anions,and the Cu surface topology effects on CO_(2)electrolysis selectivity at a temporal resolution of~400 ms.As a proof of concept,these tuning knobs were validated on an anion exchange membrane electrolyzer,which delivered a Faradaic efficiency of up to 40.4%and a partial current density of 121 mA cm^(-2)for CO_(2)-to-C_(2)H_(4)valorization.This methodology,which bridges the study of fundamental surface electrochemistry and the upgrading of practical electrolyzer performance,could be of general interest in helping to achieve a sustainable circular carbon economy.
基金This work was supported by the National Natural Science Foundation of China(Nos.22002191,12105287,22179125,22002147,and 12025505)the Natural Science Foundation of Guangdong Province(Nos.2022A1515010928 and 2022A1515012661)+3 种基金Shenzhen Science and Technology Program(No.JCYJ20220530150200002)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110956)the Youth Innovation Promotion Association CAS(No.2022458)Fundamental Research Funds for the Central Universities(No.KY2310000020).
文摘Single-atom catalysts(SACs)with M-N_(4)structure have drawn significant attention due to the facile preparation,maximum atom efficiency,unique electronic properties,uniform active sites,and excellent activity.Such catalysts integrated the merits of traditional homogeneous and heterogeneous catalysts effectively solve the cost,activity,and reuse problems.More importantly,the M-N_(4)structure is flexible and other species like atoms,groups,and particles can be added to precisely control the local environment of M-N_(4)to further improve the catalytic performance.Although unprecedented progress has been made,it remains difficulties in the rational design and controllable synthesis of a suitable SAC for a certain application.This review introduces the progress of M-N_(4)catalysts and summarizes the strategies to modulate the M-N_(4)structure,including changing the coordination number,tailoring the coordination structure,coordinating with groups,creating dual-atom catalysts(DACs),and coexisting of SAC with DAC and cluster.Special emphasis is placed on the preparation,structure characterization,and reaction mechanism of M-N_(4)-derived catalysts.Finally,the current challenges of these catalysts are also discussed to provide guidelines for the future design of efficient catalysts.
基金the National Natural Science Foundation of China(No.52078009)the joint research project of the Wind Engineering Research Center,Tokyo Polytechnic University.(MEXT(Japan)Promotion of Distinctive Joint Research Center Program Grant Number:JPMXP0619217840,JURC Grant Number:20202007).
文摘Indoor thermal comfort is essential as it improves living standards.Activity scenarios of personnel are in the process of a dynamic change.In most interior spaces with fixed working stations,people directly blown by cold air have a poor thermal experience.Therefore,to meet the differentiated environmental demands,one challenge is to explore novel ventilation strategies to satisfy the changing environmental needs.An adaptive strategy,multi-vent module-based adaptive ventilation(MAV),was designed to increase the adjustability of air distribution and better adapt to variable demands.A classroom was chosen as a representative model with multiple scenarios during its use.Simulations were conducted to verify the three-level control effect of MAV on improving the thermal environment.The results revealed that different vent solutions create different airflow patterns and thermal environments,which can be matched to the scenarios.The scale for ventilation efficiency No.4,which measured the influence scope of supply air,was used to evaluate the zoning division control in MAV.The space under the charge of a concerned MAV module showed a higher SVE4 than that at other zones.This implied that the zoning division can be effectively implemented.Thermal comfort measured using the air diffusion performance index,predicted mean vote,and draught rate showed that the application of MAV is better than that of the fixed MV mode,and the discomfort experienced when exposed to cold air can be avoided.It is believed that these results will help extend the research of adaptive ventilation strategies.
基金National Natural Science Foundation of China[11332003]National Key R&D Program[2016YFC1102305]+2 种基金Fundamental Research Funds for the Central Universities[106112016CDJXZ238802,106112017CDJZRPY0012 and 106112017CDJZRPY0021]Visiting Scholar Foundation of Key Laboratory of Biorheological Science and Technology of Ministry of Education,Chongqing University[CQKLBST-2016-004 and CQKLBST-2016-010]Chongqing Engineering Laboratory in Vascular Implants and the Public Experiment Center of the State Bioindustrial Base(Chongqing)of China.
文摘Cardiovascular stent restenosis remains a major challenge in interventional treatment of cardiovascular occlusive disease.Although the changes in arterial mechanical environment due to stent implantation are the main causes of the initiation of restenosis and thrombosis,the mechanisms that cause this initiation are still not fully understood.In this article,we reviewed the studies on the issue of stent-induced alterations in arterial mechanical environment and discussed their roles in stent restenosis and late thrombosis from three aspects:(i)the interaction of the stent with host blood vessel,involve the response of vascular wall,the mechanism of mechanical signal transmission,the process of re-endothelialization and late thrombosis;(ii)the changes of hemodynamics in the lumen of the vascular segment and(iii)the changes of mechanical microenvironment within the vascular segment wall due to stent implantation.This review has summarized and analyzed current work in order to better solve the two main problems after stent implantation,namely in stent restenosis and late thrombosis,meanwhile propose the deficiencies of current work for future reference.
基金National Natural Science Foundation of China(NSFC)(11475105)
文摘ZnO films containing Er and Ge nanocrystals(nc-Ge) were synthesized and their photoluminescence(PL) properties were studied. Visible and near-infrared PL intensities are found to be greatly increased in nc-Ge-containing film. Er-related 1.54 μm emission has been investigated under several excitation conditions upon different kinds of Ge, Er codoped ZnO thin films. 1.54 μm PL enhancement accompanied by the appearance of nc-Ge implies a significant correlation between nc-Ge and PL emission of Er^(3+). The increased intensity of 1.54 μm in Ge:Er:ZnO film is considered to come from the joint effect of the local potential distortion around Er^(3+)and the possibleenergy transfer from nc-Ge to Er^(3+).
基金supported by the“Pioneer”and“Leading Goose”R&D Programs of Zhejiang(2022C03146)National Natural Science Foundation of China(22225606 and 22176029)Central Government Guided Local Science and Technology Development Fund(2021ZY1022)。
文摘To date,copper-based catalysts are one of the most prominent catalysts that can electrochemically reduce CO_(2)towards highvalue fuels or chemicals,such as ethylene,ethanol,and acetic acid.However,the chemically active feature of Cu-based catalysts hinders the understanding of the intrinsic catalytic active sites during the initial and the operative processes of electrochemical CO_(2)reduction(CO_(2)RR).The identification and engineering of active sites during the dynamic evolution of catalysts are thereby vital to further improve the activity,selectivity,and durability of Cu-based catalysts for high-performance CO_(2)RR.In this regard,four triggers for the dynamic evolution of catalysts were introduced in detail.Afterward,three typical active-site theories during the dynamic reconstruction of catalysts were discussed.In addition,the strategies in catalyst design were summarized according to the latest reports of Cu-based catalysts for CO_(2)RR,including the tuning of electronic structure,controlling of the external potential,and regulation of local catalytic environment.Finally,the conclusions and perspectives were provided to inspire more investigations and studies on the intrinsic active sites during the dynamic evolution of catalysts,which could promote the optimization of the catalyst system to further improve the performance of CO_(2)RR.
基金This work is supported by National Natural Science Foundation of China(No.22072101,22075193,22202020)Natural Science Foundation of Jiangsu Province(No.BK20220483,BK20211306,BK20220027)+2 种基金the Key Technology Initiative of Suzhou Municipal Science and Technology Bureau(SYG201934)Six Talent Peaks Project in Jiangsu Province(No.TD-XCL-006)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘Electroreduction of CO_(2) into value-added chemicals and fuels utilizing renewable electricity offers a sustainable way to meet the carbon-neutral goal and a viable solution for the storage of intermittent green energy sources.At the core of this technology is the development of electrocatalysts to accelerate the redox kinetics of CO_(2) reduction reactions(CO_(2)RR)toward high targeted-product yield at minimal energy input.This perspective focuses on a unique category of CO_(2)RR electrocatalysts embodying both inorganic and organic components to synergistically promote the reaction activity,selectivity and stability.First,we summarize recent progress on the design and fabrication of organic/inorganic hybrids CO_(2)RR electrocatalysts,with special attention to the assembly protocols and structural configurations.We then carry out a comprehensive discussion on the mechanistic understanding of CO_(2)RR processes tackled jointly by the inorganic and organic phases,with respect to the regulation of mass and charge transport,modification of double-layer configuration,tailoring of intermediates adsorption,and establishment of tandem pathways.At the end,we outline future challenges in the rational design of organic/inorganic hybrids for CO_(2)RR and further extend the scope to the device level.We hope this work could incentivize more research interests to construct organic/inorganic hybrids for mobilizing electrocatalytic CO_(2)RR towards industrialization.
基金Project supported by Educational Department of Liaoning (L2011063)
文摘Oxyfluoride borosilicate glass with the molar composition of 60SiO2-15B2O3- 15Na2O-8CaF2-2NaF-0.25Eu2O3 was synthesized lay a traditional glass melting method. Glass ceramics containing CaF2 nanocrystals were prepared by heat treating the glass samples at a temperature in the range of 6204580 ℃. The results of X-ray diffraction (XRD) indicated that the average crystallite size and the lattice constant of CaF2 nanocrystals increased with the heat treatment temperature increasing. The luminescence spectra showed that the emission intensity of Eu3+ doped glass ceramics was stronger than that of the glass matrix, and increased with the heat treatment temperature increasing. The left edge of excitation band shifted to shorter wavelength in the glass ceramics. The local environments of Eu3+ ions in the glass and glass ceramics were different.