Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex enviro...Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex environment.In this paper,a robust localization algorithm based on Gaussian mixture model and fitting polynomial is proposed to solve the problem of NLOS error.Firstly,fitting polynomials are used to predict the measured values.The residuals of predicted and measured values are clustered by Gaussian mixture model(GMM).The LOS probability and NLOS probability are calculated according to the clustering centers.The measured values are filtered by Kalman filter(KF),variable parameter unscented Kalman filter(VPUKF)and variable parameter particle filter(VPPF)in turn.The distance value processed by KF and VPUKF and the distance value processed by KF,VPUKF and VPPF are combined according to probability.Finally,the maximum likelihood method is used to calculate the position coordinate estimation.Through simulation comparison,the proposed algorithm has better positioning accuracy than several comparison algorithms in this paper.And it shows strong robustness in strong NLOS environment.展开更多
In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in paral...In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in parallel. The search space was projected into multiple subspaces and searched by sub-populations. Also, the whole space was exploited by the other population which exchanges information with the sub-populations. In order to make the evolutionary course efficient, multivariate Gaussian model and Gaussian mixture model were used in both populations separately to estimate the distribution of individuals and reproduce new generations. For the surrogate model, Gaussian process was combined with the algorithm which predicted variance of the predictions. The results on six benchmark functions show that the new algorithm performs better than other surrogate-model based algorithms and the computation complexity is only 10% of the original estimation of distribution algorithm.展开更多
为实现对灰度不均匀医学图像分割的同时进行有偏场估计并校正,改进了基于局部高斯分布拟合(Local Gaussian Distribution Fitting,LGDF)能量的活动轮廓模型。通过分析图像有偏场模型的局部特性,将有偏场乘性因子引入图像局部灰度均值的...为实现对灰度不均匀医学图像分割的同时进行有偏场估计并校正,改进了基于局部高斯分布拟合(Local Gaussian Distribution Fitting,LGDF)能量的活动轮廓模型。通过分析图像有偏场模型的局部特性,将有偏场乘性因子引入图像局部灰度均值的表达中,从而使有偏场乘性因子成为新的能量函数的变量。能量函数的迭代最小化既实现了目标组织分割,又有效估计了有偏场。合成图像和真实医学图像实验表明该方法比现有多种方法分割性能更好,且利用估计的有偏场校正后的图像具有更好的视觉效果。展开更多
基金supported by the National Natural Science Foundation of China under Grant No.62273083 and No.61973069Natural Science Foundation of Hebei Province under Grant No.F2020501012。
文摘Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex environment.In this paper,a robust localization algorithm based on Gaussian mixture model and fitting polynomial is proposed to solve the problem of NLOS error.Firstly,fitting polynomials are used to predict the measured values.The residuals of predicted and measured values are clustered by Gaussian mixture model(GMM).The LOS probability and NLOS probability are calculated according to the clustering centers.The measured values are filtered by Kalman filter(KF),variable parameter unscented Kalman filter(VPUKF)and variable parameter particle filter(VPPF)in turn.The distance value processed by KF and VPUKF and the distance value processed by KF,VPUKF and VPPF are combined according to probability.Finally,the maximum likelihood method is used to calculate the position coordinate estimation.Through simulation comparison,the proposed algorithm has better positioning accuracy than several comparison algorithms in this paper.And it shows strong robustness in strong NLOS environment.
基金Project(2009CB320603)supported by the National Basic Research Program of ChinaProject(IRT0712)supported by Program for Changjiang Scholars and Innovative Research Team in University+1 种基金Project(B504)supported by the Shanghai Leading Academic Discipline ProgramProject(61174118)supported by the National Natural Science Foundation of China
文摘In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in parallel. The search space was projected into multiple subspaces and searched by sub-populations. Also, the whole space was exploited by the other population which exchanges information with the sub-populations. In order to make the evolutionary course efficient, multivariate Gaussian model and Gaussian mixture model were used in both populations separately to estimate the distribution of individuals and reproduce new generations. For the surrogate model, Gaussian process was combined with the algorithm which predicted variance of the predictions. The results on six benchmark functions show that the new algorithm performs better than other surrogate-model based algorithms and the computation complexity is only 10% of the original estimation of distribution algorithm.
文摘为实现对灰度不均匀医学图像分割的同时进行有偏场估计并校正,改进了基于局部高斯分布拟合(Local Gaussian Distribution Fitting,LGDF)能量的活动轮廓模型。通过分析图像有偏场模型的局部特性,将有偏场乘性因子引入图像局部灰度均值的表达中,从而使有偏场乘性因子成为新的能量函数的变量。能量函数的迭代最小化既实现了目标组织分割,又有效估计了有偏场。合成图像和真实医学图像实验表明该方法比现有多种方法分割性能更好,且利用估计的有偏场校正后的图像具有更好的视觉效果。