The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel micr...The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.展开更多
The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthqu...The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.展开更多
The spatial scale(?shing grid) of ?sheries research af fects the observed spatial patterns of?sheries resources such as catch-per-unit-ef fort(CPUE) and ?shing ef fort. We examined the scale impact of high value(HH) c...The spatial scale(?shing grid) of ?sheries research af fects the observed spatial patterns of?sheries resources such as catch-per-unit-ef fort(CPUE) and ?shing ef fort. We examined the scale impact of high value(HH) clusters of the annual ?shing ef fort for Dosidicus gigas of fshore Peru from 2009 to 2012.For a multi-scale analysis, the original commercial ?shery data were tessellated to twelve spatial scales from 6′ to 72′ with an interval of 6′. Under these spatial scales, D. gigas clusters were identi?ed using the Anselin Local Moran's I. Statistics including the number of points, mean CPUE, standard deviation(SD),skewness, kurtosis, area and centroid were calculated for these HH clusters. We found that the z-score of global Moran's I and the number of points for HH clusters follow a power law scaling relationship from2009 to 2012. The mean ef fort and its SD also follow a power law scaling relationship from 2009 to 2012.The skewness follows a linear scaling relationship in 2010 and 2011 but ?uctuates with spatial scale in2009 and 2012; kurtosis follows a logarithmic scale relationship in 2009, 2011 and 2012 but a linear scale relationship in 2010. Cluster area follows a power law scaling relationship in 2010 and 2012, a linear scaling relationship in 2009, and a quadratic scaling relationship in 2011. Based on the peaks of Moran's I indices and the multi-scale analysis, we conclude that the optimum scales are 12′ in 2009 ? 2011 and 6′ in 2012, while the coarsest allowable scales are 48′ in 2009, 2010 and 2012, and 60′ in 2011. Our research provides the best spatial scales for conducting spatial analysis of this pelagic species, and provides a better understanding of scaling behavior for the ?shing ef fort of D. gigas in the of fshore Peruvian waters.展开更多
为提高非平稳响应信号瞬时频率的识别效果,提出基于滑动窗宽优化的局部最大同步挤压广义S变换(local maximum synchrosqueezing generalized S-transform,LMSSGST)。该方法首先对非平稳响应信号进行广义S变换获得相应的时频系数;其次,...为提高非平稳响应信号瞬时频率的识别效果,提出基于滑动窗宽优化的局部最大同步挤压广义S变换(local maximum synchrosqueezing generalized S-transform,LMSSGST)。该方法首先对非平稳响应信号进行广义S变换获得相应的时频系数;其次,利用该响应信号的功率谱密度特征曲线确定局部最大同步挤压算子中滑动窗的宽度;再次,通过局部最大同步挤压算子进行时频重排;最后,采用模极大值改进算法提取瞬时频率曲线。通过两个数值算例、一个滑动窗宽参数分析和一个时变拉索试验验证了所提方法的有效性,研究结果表明:利用功率谱密度特征曲线能够有效确定滑动窗的窗宽和模极大值算法的提取范围。相比局部最大同步挤压变换算法,基于滑动窗宽优化的LMSSGST具有更佳的瞬时频率识别效果。展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
S Zorb装置再生器进料罐排气线调节球阀通过调节进料罐压力来控制装置吸附剂的循环速率,直接影响装置的催化剂再生,对装置的正常生产至关重要。由于介质流速快、吸附剂硬度高、阀门正常开度小等原因,冲刷很严重,使用寿命短,给装置安稳...S Zorb装置再生器进料罐排气线调节球阀通过调节进料罐压力来控制装置吸附剂的循环速率,直接影响装置的催化剂再生,对装置的正常生产至关重要。由于介质流速快、吸附剂硬度高、阀门正常开度小等原因,冲刷很严重,使用寿命短,给装置安稳生产带来了很大的困扰。通过CFD(Computational Fluid Dynamics,即计算流体动力学分析)分析,对该阀进行国产化改造,提升了调节性能和使用寿命,大幅降低了购置成本,在控制阀国产化方面,具有较高的推广应用价值。展开更多
基金funded by the National Natural Science Foundation of China(Nos.L2224042,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the Frontier Interdisciplinary Project of the Chinese Academy of Sciences(No.XK2022XXC003)+2 种基金the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of he Chinese Academy of Sciences(No.GJJSTD20210004).
文摘The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.
基金This work is jointly supported by the National Natural Science Foundation of China(No.41904057)the National Key Research and Development Program of China(No.2018YFC1503402).
文摘The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.
基金Supported by the National Natural Science Foundation of China(No.41406146)the Laboratory for Marine Fisheries Science and Food Production Processes at Qingdao National Laboratory for Marine Science and Technology of China(No.2017-1A02)the Shanghai Universities First-class Disciplines Project-Fisheries(A)
文摘The spatial scale(?shing grid) of ?sheries research af fects the observed spatial patterns of?sheries resources such as catch-per-unit-ef fort(CPUE) and ?shing ef fort. We examined the scale impact of high value(HH) clusters of the annual ?shing ef fort for Dosidicus gigas of fshore Peru from 2009 to 2012.For a multi-scale analysis, the original commercial ?shery data were tessellated to twelve spatial scales from 6′ to 72′ with an interval of 6′. Under these spatial scales, D. gigas clusters were identi?ed using the Anselin Local Moran's I. Statistics including the number of points, mean CPUE, standard deviation(SD),skewness, kurtosis, area and centroid were calculated for these HH clusters. We found that the z-score of global Moran's I and the number of points for HH clusters follow a power law scaling relationship from2009 to 2012. The mean ef fort and its SD also follow a power law scaling relationship from 2009 to 2012.The skewness follows a linear scaling relationship in 2010 and 2011 but ?uctuates with spatial scale in2009 and 2012; kurtosis follows a logarithmic scale relationship in 2009, 2011 and 2012 but a linear scale relationship in 2010. Cluster area follows a power law scaling relationship in 2010 and 2012, a linear scaling relationship in 2009, and a quadratic scaling relationship in 2011. Based on the peaks of Moran's I indices and the multi-scale analysis, we conclude that the optimum scales are 12′ in 2009 ? 2011 and 6′ in 2012, while the coarsest allowable scales are 48′ in 2009, 2010 and 2012, and 60′ in 2011. Our research provides the best spatial scales for conducting spatial analysis of this pelagic species, and provides a better understanding of scaling behavior for the ?shing ef fort of D. gigas in the of fshore Peruvian waters.
文摘为提高非平稳响应信号瞬时频率的识别效果,提出基于滑动窗宽优化的局部最大同步挤压广义S变换(local maximum synchrosqueezing generalized S-transform,LMSSGST)。该方法首先对非平稳响应信号进行广义S变换获得相应的时频系数;其次,利用该响应信号的功率谱密度特征曲线确定局部最大同步挤压算子中滑动窗的宽度;再次,通过局部最大同步挤压算子进行时频重排;最后,采用模极大值改进算法提取瞬时频率曲线。通过两个数值算例、一个滑动窗宽参数分析和一个时变拉索试验验证了所提方法的有效性,研究结果表明:利用功率谱密度特征曲线能够有效确定滑动窗的窗宽和模极大值算法的提取范围。相比局部最大同步挤压变换算法,基于滑动窗宽优化的LMSSGST具有更佳的瞬时频率识别效果。
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.