The electronic structures and optical properties of the monoclinic ZrO2 (m-ZrO2) are investigated by means of first-principles local density approximation (LDA) + U approach.Without on-site Coulomb interactions,the ba...The electronic structures and optical properties of the monoclinic ZrO2 (m-ZrO2) are investigated by means of first-principles local density approximation (LDA) + U approach.Without on-site Coulomb interactions,the band gap of m-ZrO2 is 3.60 eV,much lower than the experimental value (5.8 eV).By introducing the Coulomb interactions of 4d orbitals on Zr atom (Ud) and of 2p orbitals on O atom (Up),we can reproduce the experimental value of the band gap.The calculated dielectric function of m-ZrO2 exhibits a small shoulder at the edge of the band gap in its imaginary part,while in the tetragonal ZrO2 and cubic ZrO2 it is absent,which is consistent with the experimental observations.The origin of the shoulder is attributed to the difference of electronic structures near the edge of the valence and conduction bands.展开更多
With the frame of the time-dependent local density approximation, an efficient description of the optical response of clusters has been used to study the photo-absorption cross section of Na2 and Na4 clusters. It is s...With the frame of the time-dependent local density approximation, an efficient description of the optical response of clusters has been used to study the photo-absorption cross section of Na2 and Na4 clusters. It is shown that our calculated results are in good agreement with the experiment. In addition, our calculated spectrum for the Na4 cluster is in better agreement with experiment than the GW absorption spectrum.展开更多
This research paper is on Density Functional Theory (DFT) within Local Density Approximation. The calculation was performed using Fritz Haber Institute Ab-initio Molecular Simulations (FHIAIMS) code based on numerical...This research paper is on Density Functional Theory (DFT) within Local Density Approximation. The calculation was performed using Fritz Haber Institute Ab-initio Molecular Simulations (FHIAIMS) code based on numerical atomic-centered orbital basis sets. The electronic band structure, total density of state (DOS) and band gap energy were calculated for Gallium-Arsenide and Aluminium-Arsenide in diamond structures. The result of minimum total energy and computational time obtained from the experimental lattice constant 5.63 A for both Gallium Arsenide and Aluminium Arsenide is -114,915.7903 eV and 64.989 s, respectively. The electronic band structure analysis shows that Aluminium-Arsenide is an indirect band gap semiconductor while Gallium-Arsenide is a direct band gap semiconductor. The energy gap results obtained for GaAs is 0.37 eV and AlAs is 1.42 eV. The band gap in GaAs observed is very small when compared to AlAs. This indicates that GaAs can exhibit high transport property of the electron in the semiconductor which makes it suitable for optoelectronics devices while the wider band gap of AlAs indicates their potentials can be used in high temperature and strong electric fields device applications. The results reveal a good agreement within reasonable acceptable errors when compared with the theoretical and experimental values obtained in the work of Federico and Yin wang [1] [2].展开更多
The lattice parameter bulk modulus and pressure derivative of BeB2 are calculated by using the Cambridge Serial Total Energy Package (CASTEP) program in the frame of density function theory. The calculated results ...The lattice parameter bulk modulus and pressure derivative of BeB2 are calculated by using the Cambridge Serial Total Energy Package (CASTEP) program in the frame of density function theory. The calculated results agree well with the average experimental data and other theoretical results. Through the quasi-harmonic Debye model, the dependences of the normalized lattice parameters a/ao, c/c0 and the normalized primitive cell volume V/Vo on pressure P, the variation of the thermal expansion coefficient ~ with pressure P and temperature T, as well as the dependences of the heat capacity Cv on pressure P and temperature T are obtained systematically.展开更多
The elastic constants and thermodynamic properties of c-BN are calculated using the first-principles plane wave method with the relativistic analytic pseudopotential of the Hartwigen, Goedecker and Hutter (HGH) type...The elastic constants and thermodynamic properties of c-BN are calculated using the first-principles plane wave method with the relativistic analytic pseudopotential of the Hartwigen, Goedecker and Hutter (HGH) type in the frame of local density approximation and using the quasi-harmonic Debye model, separately, Moreover, tbe dependences of the normalized volume V/V0 on pressure P, as well as the bulk modulus B, the thermal expansion α, and the heat capacity CV on pressure P and temperature T are also successfully obtained,展开更多
The pressure induced phase transitions of TiO2 from anatase to columbite structure and from rutile to columbite structure and the temperature induced phase transition from anatase to rutile structure and from columbit...The pressure induced phase transitions of TiO2 from anatase to columbite structure and from rutile to columbite structure and the temperature induced phase transition from anatase to rutile structure and from columbite to rutile structure are investigated by ab initio plane-wave pseudopotential density functional theory method (DFT), together with quasi-harmonic Debye model. It is found that the zero-temperature transition pressures from anatase to columbite and from rutile to columbite are 4.55 GPa and 19.92 GPa, respectively. The zero-pressure transition temperatures from anatase to rutile and from columbite to rutile are 950 K and 1500 K, respectively. Our results are consistent with the available experimental data and other theoretical results. Moreover, the dependence of the normalized primitive cell volume V/Vo on pressure and the dependences of thermal expansion coefficient α on temperature and pressure are also obtained successfully.展开更多
Structural, thermodynamic and electronic properties of zinc-blende AIN under pressure are investigated by first- principles calculations based on the plane-wave basis set. Through the analysis of enthalpy variation of...Structural, thermodynamic and electronic properties of zinc-blende AIN under pressure are investigated by first- principles calculations based on the plane-wave basis set. Through the analysis of enthalpy variation of AIN in the zinc-blende (ZB) and the rock-salt (RS) structures with pressure, we find the phase transition of A1N from ZB to RS structure occurs at 6.7GPa. By using the quasi-harmonic Debye model, we obtain the heat capacity Cv, Debye temperature θD, Gruneisen parameter γ and thermal expansion coefficient α. The electronic properties including fundamental energy gaps and hydrostatic deformation potentials are investigated and the dependence of energy gaps on pressure is analysed.展开更多
In this work,we first use momentum density studies to understand strongly correlated electron behavior,which is typically seen in transition metal oxides.We observe that correlated electron behavior as seen in bulk Ni...In this work,we first use momentum density studies to understand strongly correlated electron behavior,which is typically seen in transition metal oxides.We observe that correlated electron behavior as seen in bulk NiO is due to the Fermi break located in the middle of overlapping spectral functions obtained from a GW(G is Green’s function and W is the screened Coulomb interaction) approximation(GWA) calculation while in the case of TiO2 we can see that the origin of the constant momentum distribution in lower momenta is due to a pile up of spectra before the Fermi energy.These observations are then used to compare our calculated Compton profiles with previous experimental studies of Fukamachi and Limandri.Our calculations for NiO are observed to follow the same trend as the experimental profile but it is seen to have a wide difference in the case of TiO2 before the Fermi break.The ground state momentum densities differ significantly from the quasiparticle momentum density,thus stressing the importance of the quasiparticle wave function as the input for the study of charge density and the electron localization function.Finally we perform a calculation of the quasiparticle renormalization function,giving a quantitative description of the discontinuity of the GWA momentum density.展开更多
We employ a first-principles plane wave method with the relativistic analytic pseudopotential of Hartwigsen, Goedecker and Hutter (HGH) scheme in the frame of DFT to calculate the equilibrium lattice parameters and ...We employ a first-principles plane wave method with the relativistic analytic pseudopotential of Hartwigsen, Goedecker and Hutter (HGH) scheme in the frame of DFT to calculate the equilibrium lattice parameters and the thermodynamic properties of AlB2 compound with hcp structure. The obtained lattice parameters are in good agreement with the available experimental data and those calculated by others. Through the quasi-harmonic Debye model, obtained successfully are the dependences of the normalized lattice parameters α/αo and c/co on pressure P, the normalized primitive cell volume V/Vo on pressure P, the variation of the thermal expansion α with pressure P and temperature T, as well as the Debye temperature OD and the heat capacity Cv on pressure P and temperature T.展开更多
基金the National Natural Science Foundation of China,the Strategic Programs for Innovative Research,the Computational Materials Science Initiative,the Yukawa International Program for Quark-Hadron Sciences at YITP,Kyoto University
文摘The electronic structures and optical properties of the monoclinic ZrO2 (m-ZrO2) are investigated by means of first-principles local density approximation (LDA) + U approach.Without on-site Coulomb interactions,the band gap of m-ZrO2 is 3.60 eV,much lower than the experimental value (5.8 eV).By introducing the Coulomb interactions of 4d orbitals on Zr atom (Ud) and of 2p orbitals on O atom (Up),we can reproduce the experimental value of the band gap.The calculated dielectric function of m-ZrO2 exhibits a small shoulder at the edge of the band gap in its imaginary part,while in the tetragonal ZrO2 and cubic ZrO2 it is absent,which is consistent with the experimental observations.The origin of the shoulder is attributed to the difference of electronic structures near the edge of the valence and conduction bands.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10405025, 10575012, 10435020, and 10535010
文摘With the frame of the time-dependent local density approximation, an efficient description of the optical response of clusters has been used to study the photo-absorption cross section of Na2 and Na4 clusters. It is shown that our calculated results are in good agreement with the experiment. In addition, our calculated spectrum for the Na4 cluster is in better agreement with experiment than the GW absorption spectrum.
文摘This research paper is on Density Functional Theory (DFT) within Local Density Approximation. The calculation was performed using Fritz Haber Institute Ab-initio Molecular Simulations (FHIAIMS) code based on numerical atomic-centered orbital basis sets. The electronic band structure, total density of state (DOS) and band gap energy were calculated for Gallium-Arsenide and Aluminium-Arsenide in diamond structures. The result of minimum total energy and computational time obtained from the experimental lattice constant 5.63 A for both Gallium Arsenide and Aluminium Arsenide is -114,915.7903 eV and 64.989 s, respectively. The electronic band structure analysis shows that Aluminium-Arsenide is an indirect band gap semiconductor while Gallium-Arsenide is a direct band gap semiconductor. The energy gap results obtained for GaAs is 0.37 eV and AlAs is 1.42 eV. The band gap in GaAs observed is very small when compared to AlAs. This indicates that GaAs can exhibit high transport property of the electron in the semiconductor which makes it suitable for optoelectronics devices while the wider band gap of AlAs indicates their potentials can be used in high temperature and strong electric fields device applications. The results reveal a good agreement within reasonable acceptable errors when compared with the theoretical and experimental values obtained in the work of Federico and Yin wang [1] [2].
基金Project supported by the National Natural Science Foundation of China (Grant No 10576020).Acknowledgments The authors are grateful to Dr M..A. Blanco and his co-workers for the GIBBS code.
文摘The lattice parameter bulk modulus and pressure derivative of BeB2 are calculated by using the Cambridge Serial Total Energy Package (CASTEP) program in the frame of density function theory. The calculated results agree well with the average experimental data and other theoretical results. Through the quasi-harmonic Debye model, the dependences of the normalized lattice parameters a/ao, c/c0 and the normalized primitive cell volume V/Vo on pressure P, the variation of the thermal expansion coefficient ~ with pressure P and temperature T, as well as the dependences of the heat capacity Cv on pressure P and temperature T are obtained systematically.
基金Project supported by the National Natural Science Foundation of China (Grant No 10576020) and by the SRF for R0CS of SEM of China (Grant No 2004176-6-4).
文摘The elastic constants and thermodynamic properties of c-BN are calculated using the first-principles plane wave method with the relativistic analytic pseudopotential of the Hartwigen, Goedecker and Hutter (HGH) type in the frame of local density approximation and using the quasi-harmonic Debye model, separately, Moreover, tbe dependences of the normalized volume V/V0 on pressure P, as well as the bulk modulus B, the thermal expansion α, and the heat capacity CV on pressure P and temperature T are also successfully obtained,
基金Project supported by the National Natural Science Foundation of China (Grant No 10776022)
文摘The pressure induced phase transitions of TiO2 from anatase to columbite structure and from rutile to columbite structure and the temperature induced phase transition from anatase to rutile structure and from columbite to rutile structure are investigated by ab initio plane-wave pseudopotential density functional theory method (DFT), together with quasi-harmonic Debye model. It is found that the zero-temperature transition pressures from anatase to columbite and from rutile to columbite are 4.55 GPa and 19.92 GPa, respectively. The zero-pressure transition temperatures from anatase to rutile and from columbite to rutile are 950 K and 1500 K, respectively. Our results are consistent with the available experimental data and other theoretical results. Moreover, the dependence of the normalized primitive cell volume V/Vo on pressure and the dependences of thermal expansion coefficient α on temperature and pressure are also obtained successfully.
基金supported by the National Natural Science Foundation of China (Grant No 10776022)
文摘Structural, thermodynamic and electronic properties of zinc-blende AIN under pressure are investigated by first- principles calculations based on the plane-wave basis set. Through the analysis of enthalpy variation of AIN in the zinc-blende (ZB) and the rock-salt (RS) structures with pressure, we find the phase transition of A1N from ZB to RS structure occurs at 6.7GPa. By using the quasi-harmonic Debye model, we obtain the heat capacity Cv, Debye temperature θD, Gruneisen parameter γ and thermal expansion coefficient α. The electronic properties including fundamental energy gaps and hydrostatic deformation potentials are investigated and the dependence of energy gaps on pressure is analysed.
文摘In this work,we first use momentum density studies to understand strongly correlated electron behavior,which is typically seen in transition metal oxides.We observe that correlated electron behavior as seen in bulk NiO is due to the Fermi break located in the middle of overlapping spectral functions obtained from a GW(G is Green’s function and W is the screened Coulomb interaction) approximation(GWA) calculation while in the case of TiO2 we can see that the origin of the constant momentum distribution in lower momenta is due to a pile up of spectra before the Fermi energy.These observations are then used to compare our calculated Compton profiles with previous experimental studies of Fukamachi and Limandri.Our calculations for NiO are observed to follow the same trend as the experimental profile but it is seen to have a wide difference in the case of TiO2 before the Fermi break.The ground state momentum densities differ significantly from the quasiparticle momentum density,thus stressing the importance of the quasiparticle wave function as the input for the study of charge density and the electron localization function.Finally we perform a calculation of the quasiparticle renormalization function,giving a quantitative description of the discontinuity of the GWA momentum density.
基金Project supported by the Educational Foundation of Sichuan Province (Grant No 2003A077), the National Natural Science Foundation of China (Grant No 10576020) and the SRF for R0CS of SEM of China (Grant No 2004176-6-4).
文摘We employ a first-principles plane wave method with the relativistic analytic pseudopotential of Hartwigsen, Goedecker and Hutter (HGH) scheme in the frame of DFT to calculate the equilibrium lattice parameters and the thermodynamic properties of AlB2 compound with hcp structure. The obtained lattice parameters are in good agreement with the available experimental data and those calculated by others. Through the quasi-harmonic Debye model, obtained successfully are the dependences of the normalized lattice parameters α/αo and c/co on pressure P, the normalized primitive cell volume V/Vo on pressure P, the variation of the thermal expansion α with pressure P and temperature T, as well as the Debye temperature OD and the heat capacity Cv on pressure P and temperature T.