The task of food image recognition,a nuanced subset of fine-grained image recognition,grapples with substantial intra-class variation and minimal inter-class differences.These challenges are compounded by the irregula...The task of food image recognition,a nuanced subset of fine-grained image recognition,grapples with substantial intra-class variation and minimal inter-class differences.These challenges are compounded by the irregular and multi-scale nature of food images.Addressing these complexities,our study introduces an advanced model that leverages multiple attention mechanisms and multi-stage local fusion,grounded in the ConvNeXt architecture.Our model employs hybrid attention(HA)mechanisms to pinpoint critical discriminative regions within images,substantially mitigating the influence of background noise.Furthermore,it introduces a multi-stage local fusion(MSLF)module,fostering long-distance dependencies between feature maps at varying stages.This approach facilitates the assimilation of complementary features across scales,significantly bolstering the model’s capacity for feature extraction.Furthermore,we constructed a dataset named Roushi60,which consists of 60 different categories of common meat dishes.Empirical evaluation of the ETH Food-101,ChineseFoodNet,and Roushi60 datasets reveals that our model achieves recognition accuracies of 91.12%,82.86%,and 92.50%,respectively.These figures not only mark an improvement of 1.04%,3.42%,and 1.36%over the foundational ConvNeXt network but also surpass the performance of most contemporary food image recognition methods.Such advancements underscore the efficacy of our proposed model in navigating the intricate landscape of food image recognition,setting a new benchmark for the field.展开更多
Based on a representation lemma. Riesz type kernels on the local field K and on the integer ring O in K are coitstructed. Furthermore, we discuss approximation theorems for the Lipschitz class Lip(L ;α) ana the Lp bo...Based on a representation lemma. Riesz type kernels on the local field K and on the integer ring O in K are coitstructed. Furthermore, we discuss approximation theorems for the Lipschitz class Lip(L ;α) ana the Lp boundedness of such operators motivated by the open problem: Does σηfa,s→f for f ∈L1(O) (see M. H. Taible-son [6] and [5])?展开更多
In this work, we developed a method to efficiently optimize the kernel function for combined data of various different sources with their corresponding kernels being already available. The vectorization of the combine...In this work, we developed a method to efficiently optimize the kernel function for combined data of various different sources with their corresponding kernels being already available. The vectorization of the combined data is achieved by a weighted concatenation of the existing data vectors. This induces a kernel matrix composed of the existing kernels as blocks along the main diagonal, weighted according to the corresponding the subspaces span by the data. The induced block kernel matrix is optimized in the platform of least-squares support vector machines simultaneously as the LS-SVM is being trained, by solving an extended set of linear equations, other than a quadratically constrained quadratic programming as in a previous method. The method is tested on a benchmark dataset, and the performance is significantly improved from the highest ROC score 0.84 using individual data source to ROC score 0.92 with data fusion.展开更多
Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance de...Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance degradation for complicated nonlinear industrial processes. In this paper, an improved LPP method, referred to as sparse kernel locality preserving projection (SKLPP) is proposed for nonlinear process fault detection. Based on the LPP model, kernel trick is applied to construct nonlinear kernel model. Furthermore, for reducing the computational complexity of kernel model, feature samples selection technique is adopted to make the kernel LPP model sparse. Lastly, two monitoring statistics of SKLPP model are built to detect process faults. Simulations on a continuous stirred tank reactor (CSTR) system show that SKLPP is more effective than LPP in terms of fault detection performance.展开更多
To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level ...To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level thresholding processes. In this paper, to improve the quality of segmented images, a simple and effective multilevel thresholding method is introduced. The proposed approach focuses on preserving edge detail by computing the 3 D Otsu along the fusion phenomena. The advantages of the presented scheme include higher quality outcomes, better preservation of tiny details and boundaries and reduced execution time with rising threshold levels. The fusion approach depends upon the differences between pixel intensity values within a small local space of an image;it aims to improve localized information after the thresholding process. The fusion of images based on local contrast can improve image segmentation performance by minimizing the loss of local contrast, loss of details and gray-level distributions. Results show that the proposed method yields more promising segmentation results when compared to conventional1 D Otsu, 2 D Otsu and 3 D Otsu methods, as evident from the objective and subjective evaluations.展开更多
In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm ba...In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm based on multi-sensor information fusion(MSIF)was proposed.In this paper,simultaneous localization and mapping(SLAM)was realized on the basis of laser Rao-Blackwellized particle filter(RBPF)-SLAM algorithm and graph-based optimization theory was used to constrain and optimize the pose estimation results of Monte Carlo localization.The feature point extraction and quadrilateral closed loop matching algorithm based on oriented FAST and rotated BRIEF(ORB)were improved aiming at the problems of generous calculation and low tracking accuracy in visual information processing by means of the three-dimensional(3D)point feature in binocular visual reconstruction environment.Factor graph model was used for the information fusion under the maximum posterior probability criterion for laser RBPF-SLAM localization and binocular visual localization.The results of simulation and experiment indicate that localization accuracy of the above-mentioned method is higher than that of traditional RBPF-SLAM algorithm and general improved algorithms,and the effectiveness and usefulness of the proposed method are verified.展开更多
The localization of the blanket jamming is studied and a new method of solving the localization ambiguity is proposed. Radars only can acquire angle information without range information when encountering the blanket ...The localization of the blanket jamming is studied and a new method of solving the localization ambiguity is proposed. Radars only can acquire angle information without range information when encountering the blanket jamming. Netted radars could get position information of the blanket jamming by make use of radars' relative position and the angle information, when there is one blanket jamming. In the presence of error, the localization method and the accuracy analysis of one blanket jamming are given. However, if there are more than one blanket jamming, and the two blanket jamming and two radars are coplanar, the localization of jamming could be error due to localization ambiguity. To solve this confusion, the Kalman filter model is established for all intersections, and through the initiation and association algorithm of multi-target, the false intersection can be eliminated. Simulations show that the presented method is valid.展开更多
Hashing technology has the advantages of reducing data storage and improving the efficiency of the learning system,making it more and more widely used in image retrieval.Multi-view data describes image information mor...Hashing technology has the advantages of reducing data storage and improving the efficiency of the learning system,making it more and more widely used in image retrieval.Multi-view data describes image information more comprehensively than traditional methods using a single-view.How to use hashing to combine multi-view data for image retrieval is still a challenge.In this paper,a multi-view fusion hashing method based on RKCCA(Random Kernel Canonical Correlation Analysis)is proposed.In order to describe image content more accurately,we use deep learning dense convolutional network feature DenseNet to construct multi-view by combining GIST feature or BoW_SIFT(Bag-of-Words model+SIFT feature)feature.This algorithm uses RKCCA method to fuse multi-view features to construct association features and apply them to image retrieval.The algorithm generates binary hash code with minimal distortion error by designing quantization regularization terms.A large number of experiments on benchmark datasets show that this method is superior to other multi-view hashing methods.展开更多
For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sens...For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sensor fusion. The pedestrian’s localization in indoor environment is described as dynamic system state estimation problem. The algorithm combines the smart mobile terminal with indoor localization, and filters the result of localization with the particle filter. In this paper, a dynamic interval particle filter algorithm based on pedestrian dead reckoning (PDR) information and RSSI localization information have been used to improve the filtering precision and the stability. Moreover, the localization results will be uploaded to the server in time, and the location fingerprint database will be built incrementally, which can adapt the dynamic changes of the indoor environment. Experimental results show that the algorithm based on multi-sensor improves the localization accuracy and robustness compared with the location algorithm based on Wi-Fi.展开更多
Biolubricant was synthesized from Cameroon palm kernel oil (PKO) by double transesterification, producing methyl esters in the first stage which were then transesterified with trimethylolpropane (TMP) to give the PKO ...Biolubricant was synthesized from Cameroon palm kernel oil (PKO) by double transesterification, producing methyl esters in the first stage which were then transesterified with trimethylolpropane (TMP) to give the PKO biolubricant in the presence of a base catalyst obtained from plantain peelings (municipal waste). The yields from both catalysts were significantly similar (48% for the locally produced and 51% for the conventional) showing that the locally produced catalyst could be valorized. The synthesized biolubricant was characterized by measuring its physical and chemical properties. The specific gravity of 1.2, ASTM color of 1.5, cloud point of 0°C, pour point of -9°C, viscosities at 40°C of 509.80 cSt and at 100°C of 30.80 cSt, viscosity index of 120, flash point greater than 210°C and a fire point greater than 220°C were obtained. This synthesized biolubricant was found to be comparable to commercial T-46 petroleum lubricant sample produced industrially from mineral sources. We have therefore used local materials to produce a biolubricant using a cheap base catalyst produced from municipal waste.展开更多
In this paper, an innovative collaborative data fusion approach to ego-vehicle localization is presented. This approach called Optimized Kalman Swarm (OKS) is a data fusion and filtering method, fusing data from a low...In this paper, an innovative collaborative data fusion approach to ego-vehicle localization is presented. This approach called Optimized Kalman Swarm (OKS) is a data fusion and filtering method, fusing data from a low cost GPS, an INS, an Odometer and a Steering wheel angle encoder. The OKS is developed addressing the challenge of managing reactivity and robustness during a real time ego-localization process. For ego-vehicle localization, especially for highly dynamic on-road maneuvers, a filter needs to be robust and reactive at the same time. In these situations, the balance between reactivity and robustness concepts is crucial. The OKS filter represents an intelligent cooperative-reactive localization algorithm inspired by dynamic Particle Swarm Optimization (PSO). It combines advantages coming from two filters: Particle Filter (PF) and Extended Kalman filter (EKF). The OKS is tested using real embedded sensors data collected in the Satory’s test tracks. The OKS is also compared with both the well-known EKF and the Particle Filters (PF). The results show the efficiency of the OKS for a high dynamic driving scenario with damaged and low quality GPS data.展开更多
Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical ...Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical methods for anomalous cell detection cannot adapt to the evolution of networks, and data mining becomes the mainstream. In this paper, we propose a novel kernel density-based local outlier factor(KLOF) to assign a degree of being an outlier to each object. Firstly, the notion of KLOF is introduced, which captures exactly the relative degree of isolation. Then, by analyzing its properties, including the tightness of upper and lower bounds, sensitivity of density perturbation, we find that KLOF is much greater than 1 for outliers. Lastly, KLOFis applied on a real-world dataset to detect anomalous cells with abnormal key performance indicators(KPIs) to verify its reliability. The experiment shows that KLOF can find outliers efficiently. It can be a guideline for the operators to perform faster and more efficient trouble shooting.展开更多
s-Lap is a new gene sequence from pig retinal pigment epithelial(RPE) cells, which was found and cloned in the early period of apoptosis of RPE cells damaged with visible light. We cloned the coding area sequence of t...s-Lap is a new gene sequence from pig retinal pigment epithelial(RPE) cells, which was found and cloned in the early period of apoptosis of RPE cells damaged with visible light. We cloned the coding area sequence of the novel gene of s-Lap and constructed its recombinant eukaryotic plasmid pcDNA3.1-GFP/s-lap with the recombinant DNA technique. The expression and localization of s-lap/GFP fusion protein in CHO and B_~16 cell lines were studied with the instantaneously transfected pcDNA3.1-GFP/s-lap recombinant plasmid. ~s-Lap/GFP fusion protein can be expressed in CHO and B_~16 cells with a high rate expression in the nuclei.展开更多
Multiple kernel clustering based on local kernel alignment has achieved outstanding clustering performance by applying local kernel alignment on each sample.However,we observe that most of existing works usually assum...Multiple kernel clustering based on local kernel alignment has achieved outstanding clustering performance by applying local kernel alignment on each sample.However,we observe that most of existing works usually assume that each local kernel alignment has the equal contribution to clustering performance,while local kernel alignment on different sample actually has different contribution to clustering performance.Therefore this assumption could have a negative effective on clustering performance.To solve this issue,we design a multiple kernel clustering algorithm based on self-weighted local kernel alignment,which can learn a proper weight to clustering performance for each local kernel alignment.Specifically,we introduce a new optimization variable-weight-to denote the contribution of each local kernel alignment to clustering performance,and then,weight,kernel combination coefficients and cluster membership are alternately optimized under kernel alignment frame.In addition,we develop a three-step alternate iterative optimization algorithm to address the resultant optimization problem.Broad experiments on five benchmark data sets have been put into effect to evaluate the clustering performance of the proposed algorithm.The experimental results distinctly demonstrate that the proposed algorithm outperforms the typical multiple kernel clustering algorithms,which illustrates the effectiveness of the proposed algorithm.展开更多
A variation pixels identification method was proposed aiming at depressing the effect of variation pixels, which dilates the theoretical hyperspectral data simplex and misguides volume evaluation of the simplex. With ...A variation pixels identification method was proposed aiming at depressing the effect of variation pixels, which dilates the theoretical hyperspectral data simplex and misguides volume evaluation of the simplex. With integration of both spatial and spectral information, this method quantitatively defines a variation index for every pixel. The variation index is proportional to pixels local entropy but inversely proportional to pixels kernel spatial attraction. The number of pixels removed was modulated by an artificial threshold factor α. Two real hyperspectral data sets were employed to examine the endmember extraction results. The reconstruction errors of preprocessing data as opposed to the result of original data were compared. The experimental results show that the number of distinct endmembers extracted has increased and the reconstruction error is greatly reduced. 100% is an optional value for the threshold factor α when dealing with no prior knowledge hyperspectral data.展开更多
In this paper,an effective target locating approach based on the fingerprint fusion posi-tioning(FFP)method is proposed which integrates the time-difference of arrival(TDOA)and the received signal strength according t...In this paper,an effective target locating approach based on the fingerprint fusion posi-tioning(FFP)method is proposed which integrates the time-difference of arrival(TDOA)and the received signal strength according to the statistical variance of target position in the stationary 3D scenarios.The FFP method fuses the pedestrian dead reckoning(PDR)estimation to solve the moving target localization problem.We also introduce auxiliary parameters to estimate the target motion state.Subsequently,we can locate the static pedestrians and track the the moving target.For the case study,eight access stationary points are placed on a bookshelf and hypermarket;one target node is moving inside hypermarkets in 2D and 3D scenarios or stationary on the bookshelf.We compare the performance of our proposed method with existing localization algorithms such as k-nearest neighbor,weighted k-nearest neighbor,pure TDOA and fingerprinting combining Bayesian frameworks including the extended Kalman filter,unscented Kalman filter and particle fil-ter(PF).The proposed approach outperforms obviously the counterpart methodologies in terms of the root mean square error and the cumulative distribution function of localization errors,espe-cially in the 3D scenarios.Simulation results corroborate the effectiveness of our proposed approach.展开更多
This paper presents the Optimized Kalman Particle Swarm (OKPS) filter. This filter results from two years of research and improves the Swarm Particle Filter (SPF). The OKPS has been designed to be both cooperative and...This paper presents the Optimized Kalman Particle Swarm (OKPS) filter. This filter results from two years of research and improves the Swarm Particle Filter (SPF). The OKPS has been designed to be both cooperative and reactive. It combines the advantages of the Particle Filter (PF) and the metaheuristic Particle Swarm Optimization (PSO) for ego-vehicles localization applications. In addition to a simple fusion between the swarm optimization and the particular filtering (which leads to the Swarm Particle Filter), the OKPS uses some attributes of the Extended Kalman filter (EKF). The OKPS filter innovates by fitting its particles with a capacity of self-diagnose by means of the EKF covariance uncertainty matrix. The particles can therefore evolve by exchanging information to assess the optimized position of the ego-vehicle. The OKPS fuses data coming from embedded sensors (low cost INS, GPS and Odometer) to perform a robust ego-vehicle positioning. The OKPS is compared to the EKF filter and to filters using particles (PF and SPF) on real data from our equipped vehicle.展开更多
A gradient metamaterial with varying-stiffness local resonators is proposed to open the multiple bandgaps and further form a broad fusion bandgap.First,three local resonators with linearly increasing stiffness are per...A gradient metamaterial with varying-stiffness local resonators is proposed to open the multiple bandgaps and further form a broad fusion bandgap.First,three local resonators with linearly increasing stiffness are periodically attached to the spring-mass chain to construct the gradient metamaterial.The dispersion relation is then derived based on Bloch's theorem to reveal the fusion bandgap theoretically.The dynamic characteristic of the finite spring-mass chain is investigated to validate the fusion of multiple bandgaps.Finally,the effects of the design parameters on multiple bandgaps are discussed.The results show that the metamaterial with a non-uniform stiffness gradient pattern is capable of opening a broad fusion bandgap and effectively attenuating the longitudinal waves within a broad frequency region.展开更多
In response to the evolving challenges posed by small unmanned aerial vehicles(UAVs),which have the potential to transport harmful payloads or cause significant damage,we present AV-FDTI,an innovative Audio-Visual Fus...In response to the evolving challenges posed by small unmanned aerial vehicles(UAVs),which have the potential to transport harmful payloads or cause significant damage,we present AV-FDTI,an innovative Audio-Visual Fusion system designed for Drone Threat Identification.AV-FDTI leverages the fusion of audio and omnidirectional camera feature inputs,providing a comprehensive solution to enhance the precision and resilience of drone classification and 3D localization.Specifically,AV-FDTI employs a CRNN network to capture vital temporal dynamics within the audio domain and utilizes a pretrained ResNet50 model for image feature extraction.Furthermore,we adopt a visual information entropy and cross-attention-based mechanism to enhance the fusion of visual and audio data.Notably,our system is trained based on automated Leica tracking annotations,offering accurate ground truth data with millimeter-level accuracy.Comprehensive comparative evaluations demonstrate the superiority of our solution over the existing systems.In our commitment to advancing this field,we will release this work as open-source code and wearable AV-FDTI design,contributing valuable resources to the research community.展开更多
In this paper,we consider the Chan–Vese(C-V)model for image segmentation and obtain its numerical solution accurately and efficiently.For this purpose,we present a local radial basis function method based on a Gaussi...In this paper,we consider the Chan–Vese(C-V)model for image segmentation and obtain its numerical solution accurately and efficiently.For this purpose,we present a local radial basis function method based on a Gaussian kernel(GA-LRBF)for spatial discretization.Compared to the standard radial basis functionmethod,this approach consumes less CPU time and maintains good stability because it uses only a small subset of points in the whole computational domain.Additionally,since the Gaussian function has the property of dimensional separation,the GA-LRBF method is suitable for dealing with isotropic images.Finally,a numerical scheme that couples GA-LRBF with the fourth-order Runge–Kutta method is applied to the C-V model,and a comparison of some numerical results demonstrates that this scheme achieves much more reliable image segmentation.展开更多
基金The support of this research was by Hubei Provincial Natural Science Foundation(2022CFB449)Science Research Foundation of Education Department of Hubei Province(B2020061),are gratefully acknowledged.
文摘The task of food image recognition,a nuanced subset of fine-grained image recognition,grapples with substantial intra-class variation and minimal inter-class differences.These challenges are compounded by the irregular and multi-scale nature of food images.Addressing these complexities,our study introduces an advanced model that leverages multiple attention mechanisms and multi-stage local fusion,grounded in the ConvNeXt architecture.Our model employs hybrid attention(HA)mechanisms to pinpoint critical discriminative regions within images,substantially mitigating the influence of background noise.Furthermore,it introduces a multi-stage local fusion(MSLF)module,fostering long-distance dependencies between feature maps at varying stages.This approach facilitates the assimilation of complementary features across scales,significantly bolstering the model’s capacity for feature extraction.Furthermore,we constructed a dataset named Roushi60,which consists of 60 different categories of common meat dishes.Empirical evaluation of the ETH Food-101,ChineseFoodNet,and Roushi60 datasets reveals that our model achieves recognition accuracies of 91.12%,82.86%,and 92.50%,respectively.These figures not only mark an improvement of 1.04%,3.42%,and 1.36%over the foundational ConvNeXt network but also surpass the performance of most contemporary food image recognition methods.Such advancements underscore the efficacy of our proposed model in navigating the intricate landscape of food image recognition,setting a new benchmark for the field.
文摘Based on a representation lemma. Riesz type kernels on the local field K and on the integer ring O in K are coitstructed. Furthermore, we discuss approximation theorems for the Lipschitz class Lip(L ;α) ana the Lp boundedness of such operators motivated by the open problem: Does σηfa,s→f for f ∈L1(O) (see M. H. Taible-son [6] and [5])?
文摘In this work, we developed a method to efficiently optimize the kernel function for combined data of various different sources with their corresponding kernels being already available. The vectorization of the combined data is achieved by a weighted concatenation of the existing data vectors. This induces a kernel matrix composed of the existing kernels as blocks along the main diagonal, weighted according to the corresponding the subspaces span by the data. The induced block kernel matrix is optimized in the platform of least-squares support vector machines simultaneously as the LS-SVM is being trained, by solving an extended set of linear equations, other than a quadratically constrained quadratic programming as in a previous method. The method is tested on a benchmark dataset, and the performance is significantly improved from the highest ROC score 0.84 using individual data source to ROC score 0.92 with data fusion.
基金Supported by the National Natural Science Foundation of China (61273160), the Natural Science Foundation of Shandong Province of China (ZR2011FM014) and the Fundamental Research Funds for the Central Universities (10CX04046A).
文摘Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance degradation for complicated nonlinear industrial processes. In this paper, an improved LPP method, referred to as sparse kernel locality preserving projection (SKLPP) is proposed for nonlinear process fault detection. Based on the LPP model, kernel trick is applied to construct nonlinear kernel model. Furthermore, for reducing the computational complexity of kernel model, feature samples selection technique is adopted to make the kernel LPP model sparse. Lastly, two monitoring statistics of SKLPP model are built to detect process faults. Simulations on a continuous stirred tank reactor (CSTR) system show that SKLPP is more effective than LPP in terms of fault detection performance.
文摘To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level thresholding processes. In this paper, to improve the quality of segmented images, a simple and effective multilevel thresholding method is introduced. The proposed approach focuses on preserving edge detail by computing the 3 D Otsu along the fusion phenomena. The advantages of the presented scheme include higher quality outcomes, better preservation of tiny details and boundaries and reduced execution time with rising threshold levels. The fusion approach depends upon the differences between pixel intensity values within a small local space of an image;it aims to improve localized information after the thresholding process. The fusion of images based on local contrast can improve image segmentation performance by minimizing the loss of local contrast, loss of details and gray-level distributions. Results show that the proposed method yields more promising segmentation results when compared to conventional1 D Otsu, 2 D Otsu and 3 D Otsu methods, as evident from the objective and subjective evaluations.
基金Natural Science Foundation of Shaanxi Province(No.2019JQ-004)Scientific Research Plan Projects of Shaanxi Education Department(No.18JK0438)Youth Talent Promotion Project of Shaanxi Province(No.20180112)。
文摘In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm based on multi-sensor information fusion(MSIF)was proposed.In this paper,simultaneous localization and mapping(SLAM)was realized on the basis of laser Rao-Blackwellized particle filter(RBPF)-SLAM algorithm and graph-based optimization theory was used to constrain and optimize the pose estimation results of Monte Carlo localization.The feature point extraction and quadrilateral closed loop matching algorithm based on oriented FAST and rotated BRIEF(ORB)were improved aiming at the problems of generous calculation and low tracking accuracy in visual information processing by means of the three-dimensional(3D)point feature in binocular visual reconstruction environment.Factor graph model was used for the information fusion under the maximum posterior probability criterion for laser RBPF-SLAM localization and binocular visual localization.The results of simulation and experiment indicate that localization accuracy of the above-mentioned method is higher than that of traditional RBPF-SLAM algorithm and general improved algorithms,and the effectiveness and usefulness of the proposed method are verified.
文摘The localization of the blanket jamming is studied and a new method of solving the localization ambiguity is proposed. Radars only can acquire angle information without range information when encountering the blanket jamming. Netted radars could get position information of the blanket jamming by make use of radars' relative position and the angle information, when there is one blanket jamming. In the presence of error, the localization method and the accuracy analysis of one blanket jamming are given. However, if there are more than one blanket jamming, and the two blanket jamming and two radars are coplanar, the localization of jamming could be error due to localization ambiguity. To solve this confusion, the Kalman filter model is established for all intersections, and through the initiation and association algorithm of multi-target, the false intersection can be eliminated. Simulations show that the presented method is valid.
基金This work is supported by the National Natural Science Foundation of China(No.61772561)the Key Research&Development Plan of Hunan Province(No.2018NK2012)+1 种基金the Science Research Projects of Hunan Provincial Education Department(Nos.18A174,18C0262)the Science&Technology Innovation Platform and Talent Plan of Hunan Province(2017TP1022).
文摘Hashing technology has the advantages of reducing data storage and improving the efficiency of the learning system,making it more and more widely used in image retrieval.Multi-view data describes image information more comprehensively than traditional methods using a single-view.How to use hashing to combine multi-view data for image retrieval is still a challenge.In this paper,a multi-view fusion hashing method based on RKCCA(Random Kernel Canonical Correlation Analysis)is proposed.In order to describe image content more accurately,we use deep learning dense convolutional network feature DenseNet to construct multi-view by combining GIST feature or BoW_SIFT(Bag-of-Words model+SIFT feature)feature.This algorithm uses RKCCA method to fuse multi-view features to construct association features and apply them to image retrieval.The algorithm generates binary hash code with minimal distortion error by designing quantization regularization terms.A large number of experiments on benchmark datasets show that this method is superior to other multi-view hashing methods.
文摘For existing indoor localization algorithm has low accuracy, high cost in deployment and maintenance, lack of robustness, and low sensor utilization, this paper proposes a particle filter algorithm based on multi-sensor fusion. The pedestrian’s localization in indoor environment is described as dynamic system state estimation problem. The algorithm combines the smart mobile terminal with indoor localization, and filters the result of localization with the particle filter. In this paper, a dynamic interval particle filter algorithm based on pedestrian dead reckoning (PDR) information and RSSI localization information have been used to improve the filtering precision and the stability. Moreover, the localization results will be uploaded to the server in time, and the location fingerprint database will be built incrementally, which can adapt the dynamic changes of the indoor environment. Experimental results show that the algorithm based on multi-sensor improves the localization accuracy and robustness compared with the location algorithm based on Wi-Fi.
文摘Biolubricant was synthesized from Cameroon palm kernel oil (PKO) by double transesterification, producing methyl esters in the first stage which were then transesterified with trimethylolpropane (TMP) to give the PKO biolubricant in the presence of a base catalyst obtained from plantain peelings (municipal waste). The yields from both catalysts were significantly similar (48% for the locally produced and 51% for the conventional) showing that the locally produced catalyst could be valorized. The synthesized biolubricant was characterized by measuring its physical and chemical properties. The specific gravity of 1.2, ASTM color of 1.5, cloud point of 0°C, pour point of -9°C, viscosities at 40°C of 509.80 cSt and at 100°C of 30.80 cSt, viscosity index of 120, flash point greater than 210°C and a fire point greater than 220°C were obtained. This synthesized biolubricant was found to be comparable to commercial T-46 petroleum lubricant sample produced industrially from mineral sources. We have therefore used local materials to produce a biolubricant using a cheap base catalyst produced from municipal waste.
文摘In this paper, an innovative collaborative data fusion approach to ego-vehicle localization is presented. This approach called Optimized Kalman Swarm (OKS) is a data fusion and filtering method, fusing data from a low cost GPS, an INS, an Odometer and a Steering wheel angle encoder. The OKS is developed addressing the challenge of managing reactivity and robustness during a real time ego-localization process. For ego-vehicle localization, especially for highly dynamic on-road maneuvers, a filter needs to be robust and reactive at the same time. In these situations, the balance between reactivity and robustness concepts is crucial. The OKS filter represents an intelligent cooperative-reactive localization algorithm inspired by dynamic Particle Swarm Optimization (PSO). It combines advantages coming from two filters: Particle Filter (PF) and Extended Kalman filter (EKF). The OKS is tested using real embedded sensors data collected in the Satory’s test tracks. The OKS is also compared with both the well-known EKF and the Particle Filters (PF). The results show the efficiency of the OKS for a high dynamic driving scenario with damaged and low quality GPS data.
基金supported by the National Basic Research Program of China (973 Program: 2013CB329004)
文摘Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical methods for anomalous cell detection cannot adapt to the evolution of networks, and data mining becomes the mainstream. In this paper, we propose a novel kernel density-based local outlier factor(KLOF) to assign a degree of being an outlier to each object. Firstly, the notion of KLOF is introduced, which captures exactly the relative degree of isolation. Then, by analyzing its properties, including the tightness of upper and lower bounds, sensitivity of density perturbation, we find that KLOF is much greater than 1 for outliers. Lastly, KLOFis applied on a real-world dataset to detect anomalous cells with abnormal key performance indicators(KPIs) to verify its reliability. The experiment shows that KLOF can find outliers efficiently. It can be a guideline for the operators to perform faster and more efficient trouble shooting.
文摘s-Lap is a new gene sequence from pig retinal pigment epithelial(RPE) cells, which was found and cloned in the early period of apoptosis of RPE cells damaged with visible light. We cloned the coding area sequence of the novel gene of s-Lap and constructed its recombinant eukaryotic plasmid pcDNA3.1-GFP/s-lap with the recombinant DNA technique. The expression and localization of s-lap/GFP fusion protein in CHO and B_~16 cell lines were studied with the instantaneously transfected pcDNA3.1-GFP/s-lap recombinant plasmid. ~s-Lap/GFP fusion protein can be expressed in CHO and B_~16 cells with a high rate expression in the nuclei.
基金This work was supported by the National Key R&D Program of China(No.2018YFB1003203)National Natural Science Foundation of China(Nos.61672528,61773392,61772561)+1 种基金Educational Commission of Hu Nan Province,China(No.14B193)the Key Research&Development Plan of Hunan Province(No.2018NK2012).
文摘Multiple kernel clustering based on local kernel alignment has achieved outstanding clustering performance by applying local kernel alignment on each sample.However,we observe that most of existing works usually assume that each local kernel alignment has the equal contribution to clustering performance,while local kernel alignment on different sample actually has different contribution to clustering performance.Therefore this assumption could have a negative effective on clustering performance.To solve this issue,we design a multiple kernel clustering algorithm based on self-weighted local kernel alignment,which can learn a proper weight to clustering performance for each local kernel alignment.Specifically,we introduce a new optimization variable-weight-to denote the contribution of each local kernel alignment to clustering performance,and then,weight,kernel combination coefficients and cluster membership are alternately optimized under kernel alignment frame.In addition,we develop a three-step alternate iterative optimization algorithm to address the resultant optimization problem.Broad experiments on five benchmark data sets have been put into effect to evaluate the clustering performance of the proposed algorithm.The experimental results distinctly demonstrate that the proposed algorithm outperforms the typical multiple kernel clustering algorithms,which illustrates the effectiveness of the proposed algorithm.
基金Projects(61571145,61405041)supported by the National Natural Science Foundation of ChinaProject(2014M551221)supported by the China Postdoctoral Science Foundation,China+3 种基金Project(LBH-Z13057)supported by the Heilongjiang Postdoctoral Science Found,ChinaProject(ZD201216)supported by the Key Program of Heilongjiang Natural Science Foundation,ChinaProject(RC2013XK009003)supported by the Program of Excellent Academic Leaders of Harbin,ChinaProject(HEUCF1508)supported by the Fundamental Research Funds for the Central Universities,China
文摘A variation pixels identification method was proposed aiming at depressing the effect of variation pixels, which dilates the theoretical hyperspectral data simplex and misguides volume evaluation of the simplex. With integration of both spatial and spectral information, this method quantitatively defines a variation index for every pixel. The variation index is proportional to pixels local entropy but inversely proportional to pixels kernel spatial attraction. The number of pixels removed was modulated by an artificial threshold factor α. Two real hyperspectral data sets were employed to examine the endmember extraction results. The reconstruction errors of preprocessing data as opposed to the result of original data were compared. The experimental results show that the number of distinct endmembers extracted has increased and the reconstruction error is greatly reduced. 100% is an optional value for the threshold factor α when dealing with no prior knowledge hyperspectral data.
基金partially supported by the National Natural Science Foun-dation of China(No.62071389).
文摘In this paper,an effective target locating approach based on the fingerprint fusion posi-tioning(FFP)method is proposed which integrates the time-difference of arrival(TDOA)and the received signal strength according to the statistical variance of target position in the stationary 3D scenarios.The FFP method fuses the pedestrian dead reckoning(PDR)estimation to solve the moving target localization problem.We also introduce auxiliary parameters to estimate the target motion state.Subsequently,we can locate the static pedestrians and track the the moving target.For the case study,eight access stationary points are placed on a bookshelf and hypermarket;one target node is moving inside hypermarkets in 2D and 3D scenarios or stationary on the bookshelf.We compare the performance of our proposed method with existing localization algorithms such as k-nearest neighbor,weighted k-nearest neighbor,pure TDOA and fingerprinting combining Bayesian frameworks including the extended Kalman filter,unscented Kalman filter and particle fil-ter(PF).The proposed approach outperforms obviously the counterpart methodologies in terms of the root mean square error and the cumulative distribution function of localization errors,espe-cially in the 3D scenarios.Simulation results corroborate the effectiveness of our proposed approach.
文摘This paper presents the Optimized Kalman Particle Swarm (OKPS) filter. This filter results from two years of research and improves the Swarm Particle Filter (SPF). The OKPS has been designed to be both cooperative and reactive. It combines the advantages of the Particle Filter (PF) and the metaheuristic Particle Swarm Optimization (PSO) for ego-vehicles localization applications. In addition to a simple fusion between the swarm optimization and the particular filtering (which leads to the Swarm Particle Filter), the OKPS uses some attributes of the Extended Kalman filter (EKF). The OKPS filter innovates by fitting its particles with a capacity of self-diagnose by means of the EKF covariance uncertainty matrix. The particles can therefore evolve by exchanging information to assess the optimized position of the ego-vehicle. The OKPS fuses data coming from embedded sensors (low cost INS, GPS and Odometer) to perform a robust ego-vehicle positioning. The OKPS is compared to the EKF filter and to filters using particles (PF and SPF) on real data from our equipped vehicle.
基金supported by the National Natural Science Foundation of China(Nos.12122206,52175125,12272129,12304309,and 12302039)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)+1 种基金the Hong Kong Scholars Program of China(No.XJ2022012)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)。
文摘A gradient metamaterial with varying-stiffness local resonators is proposed to open the multiple bandgaps and further form a broad fusion bandgap.First,three local resonators with linearly increasing stiffness are periodically attached to the spring-mass chain to construct the gradient metamaterial.The dispersion relation is then derived based on Bloch's theorem to reveal the fusion bandgap theoretically.The dynamic characteristic of the finite spring-mass chain is investigated to validate the fusion of multiple bandgaps.Finally,the effects of the design parameters on multiple bandgaps are discussed.The results show that the metamaterial with a non-uniform stiffness gradient pattern is capable of opening a broad fusion bandgap and effectively attenuating the longitudinal waves within a broad frequency region.
基金National Research Foundation,Singapore,under its Medium-Sized Center for Advanced Robotics Technology Innovation(CARTIN)under project WP5 within the Delta-NTU Corporate Lab with funding support from A*STAR under its IAF-ICP program(Grant no:I2201E0013)and Delta Electronics Inc.
文摘In response to the evolving challenges posed by small unmanned aerial vehicles(UAVs),which have the potential to transport harmful payloads or cause significant damage,we present AV-FDTI,an innovative Audio-Visual Fusion system designed for Drone Threat Identification.AV-FDTI leverages the fusion of audio and omnidirectional camera feature inputs,providing a comprehensive solution to enhance the precision and resilience of drone classification and 3D localization.Specifically,AV-FDTI employs a CRNN network to capture vital temporal dynamics within the audio domain and utilizes a pretrained ResNet50 model for image feature extraction.Furthermore,we adopt a visual information entropy and cross-attention-based mechanism to enhance the fusion of visual and audio data.Notably,our system is trained based on automated Leica tracking annotations,offering accurate ground truth data with millimeter-level accuracy.Comprehensive comparative evaluations demonstrate the superiority of our solution over the existing systems.In our commitment to advancing this field,we will release this work as open-source code and wearable AV-FDTI design,contributing valuable resources to the research community.
基金sponsored by Guangdong Basic and Applied Basic Research Foundation under Grant No.2021A1515110680Guangzhou Basic and Applied Basic Research under Grant No.202102020340.
文摘In this paper,we consider the Chan–Vese(C-V)model for image segmentation and obtain its numerical solution accurately and efficiently.For this purpose,we present a local radial basis function method based on a Gaussian kernel(GA-LRBF)for spatial discretization.Compared to the standard radial basis functionmethod,this approach consumes less CPU time and maintains good stability because it uses only a small subset of points in the whole computational domain.Additionally,since the Gaussian function has the property of dimensional separation,the GA-LRBF method is suitable for dealing with isotropic images.Finally,a numerical scheme that couples GA-LRBF with the fourth-order Runge–Kutta method is applied to the C-V model,and a comparison of some numerical results demonstrates that this scheme achieves much more reliable image segmentation.