Marginal Fisher analysis (MFA) is a repre- sentative margin-based learning algorithm for face recognition. A major problem in MFA is how to select appropriate parameters, k1 and k2, to construct the respective intri...Marginal Fisher analysis (MFA) is a repre- sentative margin-based learning algorithm for face recognition. A major problem in MFA is how to select appropriate parameters, k1 and k2, to construct the respective intrinsic and penalty graphs. In this paper, we propose a novel method called nearest-neighbor (NN) classifier motivated marginal discriminant projections (NN-MDP). Motivated by the NN classifier, NN-MDP seeks a few projection vectors to prevent data samples from being wrongly categorized. Like MFA, NN-MDP can characterize the compactness and separability of samples simultaneously. Moreover, in contrast to MFA, NN-MDP can actively construct the intrinsic graph and penalty graph without unknown parameters. Experimental results on the 0RL, Yale, and FERET face databases show that NN-MDP not only avoids the intractability, and high expense of neighborhood parameter selection, but is also more applicable to face recognition with NN classifier than other methods.展开更多
文摘Marginal Fisher analysis (MFA) is a repre- sentative margin-based learning algorithm for face recognition. A major problem in MFA is how to select appropriate parameters, k1 and k2, to construct the respective intrinsic and penalty graphs. In this paper, we propose a novel method called nearest-neighbor (NN) classifier motivated marginal discriminant projections (NN-MDP). Motivated by the NN classifier, NN-MDP seeks a few projection vectors to prevent data samples from being wrongly categorized. Like MFA, NN-MDP can characterize the compactness and separability of samples simultaneously. Moreover, in contrast to MFA, NN-MDP can actively construct the intrinsic graph and penalty graph without unknown parameters. Experimental results on the 0RL, Yale, and FERET face databases show that NN-MDP not only avoids the intractability, and high expense of neighborhood parameter selection, but is also more applicable to face recognition with NN classifier than other methods.