A sequential design and global optimization method is proposed to coordinately design local and widearea controllers to enhance the overall stability of largescale power system.The sequential design is used to assign ...A sequential design and global optimization method is proposed to coordinately design local and widearea controllers to enhance the overall stability of largescale power system.The sequential design is used to assign the distributed local power system stabilizer (LPSS) and high-voltage direct current (HVDC) wide-area stabilizing controller (HVDC-WASC) to the concerned damping modes.The global optimization is used to simultaneously optimize all the overall control gains of LPSSs and HVDCWASC.Moreover,the optimization model,which has an adaptive ability of searching and updating dominant oscillation modes,is established.Both the linear analysis and nonlinear simulation results verify the effectiveness of the proposed design method in enhancing the stability of large-scale power systems.展开更多
In this paper, the power consumption, the vertical local void fraction and the local gas–liquid interfacial area are investigated in the aerated stirred tank reactors(STRs) equipped with a rigid-flexible impeller. Me...In this paper, the power consumption, the vertical local void fraction and the local gas–liquid interfacial area are investigated in the aerated stirred tank reactors(STRs) equipped with a rigid-flexible impeller. Meanwhile, the regressive correlation based on power consumption and interfacial area is proposed. Then a novel homogenization energy(HE = RSDPtm) expression based on power consumption and local interfacial area is redefined and used to indicate the mixing efficiency. The optimal operating mode is selected based on the change of the HE value. This paper can provide research ideas for structural optimization of stirred reactors.展开更多
The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP se...The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP search method is proposed to reduce the computational complexity using small-aperture microphone array.The proposed method inspired by the SRP spatial spectrum includes two steps:first,the proposed method estimates the azimuth of the sound source roughly and determines whether the sound source is in far field or near field;then,different fine searching operations are performed according to the sound source being in far field or near field.Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computation complexity of the proposed method with those of the conventional SRP-PHAT algorithm.The results show that,the proposed method has a comparative accuracy with the conventional SRP algorithm,and achieves a reduction of 93.62%in computation complexity compared to the conventional SRP algorithm.展开更多
Local field potential(LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation(FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch...Local field potential(LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation(FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(No.51377001,No.61233008,No.61304092,)the International Science and Technology Cooperation Program of China(No.2015DFR70850)+1 种基金the State Grid Science and Technology Project of China(No.5216A014007V)the Science and Technology Project of Hunan Power Company of China(No.5216A213509X)
文摘A sequential design and global optimization method is proposed to coordinately design local and widearea controllers to enhance the overall stability of largescale power system.The sequential design is used to assign the distributed local power system stabilizer (LPSS) and high-voltage direct current (HVDC) wide-area stabilizing controller (HVDC-WASC) to the concerned damping modes.The global optimization is used to simultaneously optimize all the overall control gains of LPSSs and HVDCWASC.Moreover,the optimization model,which has an adaptive ability of searching and updating dominant oscillation modes,is established.Both the linear analysis and nonlinear simulation results verify the effectiveness of the proposed design method in enhancing the stability of large-scale power systems.
基金Supported by the National Natural Science Foundation of China(21576033,21636004)Central University of Basic Scientific Research Special Project(106112017CDJQJ228808)+2 种基金Chongqing Special Social Undertakings and People's Livelihood Security Science and Technology Innovation(cstc2017shmsA90016)National Key Research and Development Project(2017YFB0603105)National Sci-Tech Support Plan(2015BAB17B01)
文摘In this paper, the power consumption, the vertical local void fraction and the local gas–liquid interfacial area are investigated in the aerated stirred tank reactors(STRs) equipped with a rigid-flexible impeller. Meanwhile, the regressive correlation based on power consumption and interfacial area is proposed. Then a novel homogenization energy(HE = RSDPtm) expression based on power consumption and local interfacial area is redefined and used to indicate the mixing efficiency. The optimal operating mode is selected based on the change of the HE value. This paper can provide research ideas for structural optimization of stirred reactors.
基金Supported by the National Natural Science Foundation of China(No.61201345)the Beijing Key Laboratory of Advanced Information Science and Network Technology(No.XDXX1308)
文摘The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP search method is proposed to reduce the computational complexity using small-aperture microphone array.The proposed method inspired by the SRP spatial spectrum includes two steps:first,the proposed method estimates the azimuth of the sound source roughly and determines whether the sound source is in far field or near field;then,different fine searching operations are performed according to the sound source being in far field or near field.Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computation complexity of the proposed method with those of the conventional SRP-PHAT algorithm.The results show that,the proposed method has a comparative accuracy with the conventional SRP algorithm,and achieves a reduction of 93.62%in computation complexity compared to the conventional SRP algorithm.
基金supported by the National Natural Science Foundation of China(Grant No.61273063)China Postdoctoral Science Foundation(Grant No.2013M540215)the Natural Science Foundation of Hebei Province,China(Grant No.F2014203161)
文摘Local field potential(LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation(FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases.