It is well known that trust region methods are very effective for optimization problems. In this article, a new adaptive trust region method is presented for solving uncon- strained optimization problems. The proposed...It is well known that trust region methods are very effective for optimization problems. In this article, a new adaptive trust region method is presented for solving uncon- strained optimization problems. The proposed method combines a modified secant equation with the BFGS updated formula and an adaptive trust region radius, where the new trust region radius makes use of not only the function information but also the gradient information. Under suitable conditions, global convergence is proved, and we demonstrate the local superlinear convergence of the proposed method. The numerical results indicate that the proposed method is very efficient.展开更多
In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of comput...In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of computing trial directions by this method combining with the line search technique. Close to the solution set this method is locally Q-superlinearly convergent under an error bound assumption which is much weaker than the standard nonsingularity condition.展开更多
提出一种基于推荐证据的对等网络(Peer-to-Peer,P2P)信任模型RETM(Recommendation Evidence based Trust Model for P2P networks),解决了基于推荐的信任模型中普遍存在的在汇聚推荐信息时无法处理不确定性信息以及强行组合矛盾推荐信...提出一种基于推荐证据的对等网络(Peer-to-Peer,P2P)信任模型RETM(Recommendation Evidence based Trust Model for P2P networks),解决了基于推荐的信任模型中普遍存在的在汇聚推荐信息时无法处理不确定性信息以及强行组合矛盾推荐信息引起的性能下降问题,同时,RETM采取推荐证据预处理措施,在合成之前有效过滤了无用的以及误导性的推荐信息,使得该模型具有一定的抗攻击性能.在推荐信息的查找问题上,RETM提出了基于反馈信息的概率查找算法,该算法在降低了网络带宽开销的情况下,提高了信息查询的准确率.实验证明RETM较已有的信任机制在系统成功交易率、模型的安全性等问题上有较大改进.展开更多
现有组信任模型在维护信任关系的稳定性与负载均衡能力方面存在局限性。为解决这些问题,提出一种稳定性增强的组信任模型SEGTM(stability enhanced group based trust model),以动态组构造与管理为基础,划分同组及跨组节点间的信任关系...现有组信任模型在维护信任关系的稳定性与负载均衡能力方面存在局限性。为解决这些问题,提出一种稳定性增强的组信任模型SEGTM(stability enhanced group based trust model),以动态组构造与管理为基础,划分同组及跨组节点间的信任关系并给予了各自的度量方法,较好地解决了信任模型因信任网络拓扑动态改变而难以有效维护信任关系度量的准确性问题。仿真实验结果表明,该模型在应对网络拓扑动态变化时具有较好的稳定性和负载均衡能力,同时也能有效抵抗恶意节点的攻击。展开更多
基金Supported by the National Natural Science Foundation of China(11661009)the Guangxi Science Fund for Distinguished Young Scholars(2015GXNSFGA139001)+1 种基金the Guangxi Natural Science Key Fund(2017GXNSFDA198046)the Basic Ability Promotion Project of Guangxi Young and Middle-Aged Teachers(2017KY0019)
文摘It is well known that trust region methods are very effective for optimization problems. In this article, a new adaptive trust region method is presented for solving uncon- strained optimization problems. The proposed method combines a modified secant equation with the BFGS updated formula and an adaptive trust region radius, where the new trust region radius makes use of not only the function information but also the gradient information. Under suitable conditions, global convergence is proved, and we demonstrate the local superlinear convergence of the proposed method. The numerical results indicate that the proposed method is very efficient.
基金Supported by the National Natural Science Foundation of China (10871130)the Research Fund for the Doctoral Program of Higher Education of China (20093127110005)the Scientific Computing Key Laboratory of Shanghai Universities
文摘In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of computing trial directions by this method combining with the line search technique. Close to the solution set this method is locally Q-superlinearly convergent under an error bound assumption which is much weaker than the standard nonsingularity condition.
文摘提出一种基于推荐证据的对等网络(Peer-to-Peer,P2P)信任模型RETM(Recommendation Evidence based Trust Model for P2P networks),解决了基于推荐的信任模型中普遍存在的在汇聚推荐信息时无法处理不确定性信息以及强行组合矛盾推荐信息引起的性能下降问题,同时,RETM采取推荐证据预处理措施,在合成之前有效过滤了无用的以及误导性的推荐信息,使得该模型具有一定的抗攻击性能.在推荐信息的查找问题上,RETM提出了基于反馈信息的概率查找算法,该算法在降低了网络带宽开销的情况下,提高了信息查询的准确率.实验证明RETM较已有的信任机制在系统成功交易率、模型的安全性等问题上有较大改进.
文摘现有组信任模型在维护信任关系的稳定性与负载均衡能力方面存在局限性。为解决这些问题,提出一种稳定性增强的组信任模型SEGTM(stability enhanced group based trust model),以动态组构造与管理为基础,划分同组及跨组节点间的信任关系并给予了各自的度量方法,较好地解决了信任模型因信任网络拓扑动态改变而难以有效维护信任关系度量的准确性问题。仿真实验结果表明,该模型在应对网络拓扑动态变化时具有较好的稳定性和负载均衡能力,同时也能有效抵抗恶意节点的攻击。