期刊文献+
共找到2,785篇文章
< 1 2 140 >
每页显示 20 50 100
基于Local-Global-VIT细粒度分类算法的蝴蝶识别
1
作者 李建祥 李小林 +4 位作者 王荣 张元孜 陈淑武 张飞萍 黄世国 《昆虫学报》 CAS CSCD 北大核心 2024年第9期1251-1261,共11页
【目的】准确鉴别蝴蝶种类,动态观测蝴蝶群落多样性变化对生境质量评估、生态环境恢复等方面具有重要意义。针对现有蝴蝶识别方法仅依靠整体特征,忽略了局部特征导致识别生态图像能力不足的问题,本研究旨在开发一种Local-Global-VIT细... 【目的】准确鉴别蝴蝶种类,动态观测蝴蝶群落多样性变化对生境质量评估、生态环境恢复等方面具有重要意义。针对现有蝴蝶识别方法仅依靠整体特征,忽略了局部特征导致识别生态图像能力不足的问题,本研究旨在开发一种Local-Global-VIT细粒度分类算法的蝴蝶识别方法。【方法】本研究以5科200种共计25 279张蝴蝶图像为识别对象,采用多种数据增强方法扩充图像数据;通过视觉Transformer(vision transformer, VIT)层级结构及自注意力机制逐层选择局部令牌并保留至最后一层学习蝴蝶局部判别部位信息;聚合高层全局令牌消除复杂背景干扰;通过对比损失拉大类间距提高区分度。除此之外,使用合理的学习率调整策略和迁移学习方法,优化了模型收敛过程,在不增加参数量的情况下提高了性能。【结果】Local-Global-VIT算法在大规模细粒度公开数据集Butterfly-200上识别准确率达91.20%,较改进前提升了1.15%,比最优的一般害虫识别算法EfficientNet_b0和细粒度分类算法TransFG准确率分别高了1.83%和0.64%,F1分值分别提高了1.89%和0.88%。【结论】Local-Global-VIT算法以细粒度识别方式有效解决了蝴蝶类内差异大、类间差异小的分类难题,能准确地识别蝴蝶种类,有助于高效评估生境质量。 展开更多
关键词 蝴蝶 图像识别 细粒度分类 vision transformer 局部令牌选择 全局令牌聚合
下载PDF
Numerical simulation of the welding deformation for the side sill of the bogie frame based on local-global method 被引量:13
2
作者 杨鑫华 王春生 +2 位作者 常力 李娅娜 兆文忠 《China Welding》 EI CAS 2007年第4期11-16,共6页
Considering the limitation of computational capacity, a new finite element solution is used to simulate the welding deformation of the side sill of railroad car' s bogie frame based on the local-global method. Firstl... Considering the limitation of computational capacity, a new finite element solution is used to simulate the welding deformation of the side sill of railroad car' s bogie frame based on the local-global method. Firstly, a volumetric heat source defined by a double ellipsoid is adopted to simulate the thermal distributions of the arc welding process. And then, the local models extracted from the global model are computed with refined meshes. On these bases, the global distortions of the subject studied are ascertained by transferring the inner forces of computed local models to the global model. It indicates that the local-global method is feasible for simulating the large welded structures by comparing the computed results with the corresponding actual measured values. The work provides basis for optimizing the welding sequence and clamping conditions, and has theoretical values and engineering significance in the integral design, manufacturing technique selection of the bogie frame, as well as other kinds of large welded structures. 展开更多
关键词 welding deformation numerical simulation local-global method
下载PDF
基于前后景分割的图像情感分析
3
作者 高玮军 刘书君 孙子博 《计算机工程与应用》 北大核心 2025年第1期206-213,共8页
图像是生活中重要的信息源之一,对其所表达的内容进行细节分析,可以更充分地利用信息资源。随着信息化的快速发展,针对图像模态开展情感分析工作已成为目前研究的一大热点。图像情感分析的主要环节依次为:情感特征提取、情感空间的选择... 图像是生活中重要的信息源之一,对其所表达的内容进行细节分析,可以更充分地利用信息资源。随着信息化的快速发展,针对图像模态开展情感分析工作已成为目前研究的一大热点。图像情感分析的主要环节依次为:情感特征提取、情感空间的选择、特征融合和情感识别分类。现有的大部分图像情感分析工作以图像整体为单位进行输入,未能充分发挥图像中局部特征的情感作用。如果不能对图像的全局特征和局部特征作出区分,当图像出现清晰度不高、背景噪声较多等问题时,图像的全局特征就会变得较为敏感,特征提取和识别工作将会受到严重干扰,对情感分析的准确性产生一定影响。针对目前图像情感分析存在的不足,提出一种基于前后景分割的图像情感分析方法。该方法以YOLOv5为框架,引入ConvNeXt模块和AFF模块,分别进行特征提取和注意力融合。实验结果表明,与目前比较流行的几种图像情感分析方法相比,该方法对于包含更多情感信息和语义信息的场景更为适用,性能也有所提升。 展开更多
关键词 图像情感分析 前后景分割 特征融合 YOLOv5 局部特征 全局特征
下载PDF
基于机器视觉的金属零件表面缺陷检测研究
4
作者 孙姿姣 罗芳 李阳辉 《清远职业技术学院学报》 2025年第1期42-48,共7页
目前制造业中,金属零件的缺陷问题会导致重大经济损失,主要问题在于零件缺陷小且缺陷位置出现随机,传统人工检测难以区分微小缺陷位置与非缺陷位置,且人力成本高,经济效益低下。针对这一问题,研究提出一种基于机器视觉的金属零件表面缺... 目前制造业中,金属零件的缺陷问题会导致重大经济损失,主要问题在于零件缺陷小且缺陷位置出现随机,传统人工检测难以区分微小缺陷位置与非缺陷位置,且人力成本高,经济效益低下。针对这一问题,研究提出一种基于机器视觉的金属零件表面缺陷检测方法,通过机器视觉检测代替人力劳动,同时采用交互式空间位置注意力模块,解决了金属零件表面的缺陷不明显难以检测的问题,采用对偶局部-全局Transformer模块,解决了缺陷区域与周围正常区域难以区分的问题,提高了金属零件表面微小缺陷的检测性能,从而提高企业经济效益。 展开更多
关键词 机器视觉 缺陷检测 交互式空间位置注意力模块 对偶局部-全局Transformer模块
下载PDF
基于改进粒子群算法的6R机械臂时间最优轨迹规划
5
作者 王迈新 闫莉 李雨菲 《制造技术与机床》 北大核心 2025年第2期36-42,共7页
为了提高机械臂的工作效率和稳定性,提出一种改进粒子群算法(particle swarm optimization,PSO)的时间最优5次B样条插值轨迹优化算法。以UR10机械臂为研究对象,首先,利用5次B样条曲线对给定的轨迹点进行插值;其次,针对传统PSO算法存在... 为了提高机械臂的工作效率和稳定性,提出一种改进粒子群算法(particle swarm optimization,PSO)的时间最优5次B样条插值轨迹优化算法。以UR10机械臂为研究对象,首先,利用5次B样条曲线对给定的轨迹点进行插值;其次,针对传统PSO算法存在求解精度低、易陷入局部最优的缺陷,调整算法中的惯性权重和认知因子,使其随着迭代次数的增加而动态改变数值大小,进而提高算法前期全局搜索能力和后期局部搜索能力;最后,通过3种测试函数测试和仿真实验验证,结果表明,改进后的PSO算法的求解精度提升,可以有效提高机械臂的工作效率。 展开更多
关键词 机械臂 5次B样条曲线 粒子群算法 时间最优轨迹规划 全局搜索能力 局部搜索能力
下载PDF
基于多策略融合改进粒子群算法的路径规划研究 被引量:5
6
作者 陈旭东 杨光永 +1 位作者 徐天奇 樊康生 《组合机床与自动化加工技术》 北大核心 2024年第2期44-50,共7页
针对传统粒子群算法(particle swarm optimization,PSO)在路径规划中易陷入局部最优使得规划路径较长以及搜索后期由于种群多样性降低容易陷入停滞等问题,提出一种多策略融合粒子群算法(multi-strategy fusion particle swarm optimizat... 针对传统粒子群算法(particle swarm optimization,PSO)在路径规划中易陷入局部最优使得规划路径较长以及搜索后期由于种群多样性降低容易陷入停滞等问题,提出一种多策略融合粒子群算法(multi-strategy fusion particle swarm optimization,MFPSO)并将其应用于路径规划中。首先,利用中垂线算法(midperpendicular algorithm)的粒子位置更新方法提升粒子的收敛速度;其次,在最优粒子附近采用生成爆炸粒子的策略使算法跳出局部最优;然后,引入线性动态惯性权重调整方法,增加算法的搜索能力;最后,在路径规划应用中采用全局最优解局部搜索策略,在算法后期得出的最优路径再进行局部搜索得出更优的路径,增加机器人路径规划能力。仿真结果表明,多策略融合粒子群算法在路径规划中具有更高的路径搜索能力。 展开更多
关键词 路径规划 中垂线算法 爆炸粒子 全局最优解局部搜索
下载PDF
中华文化主体性的总体性呈现 被引量:4
7
作者 韩升 《中州学刊》 CSSCI 北大核心 2024年第3期5-12,共8页
中华文化主体性是深刻理解习近平文化思想作为强大思想武器和科学行动指南的核心概念,要从更悠远的历史纵深、更宽阔的时代视野、更美好的未来图景的协调贯通中加以总体性呈现。中华文化主体性以中华历史文化传统为立基之本,以铸牢中华... 中华文化主体性是深刻理解习近平文化思想作为强大思想武器和科学行动指南的核心概念,要从更悠远的历史纵深、更宽阔的时代视野、更美好的未来图景的协调贯通中加以总体性呈现。中华文化主体性以中华历史文化传统为立基之本,以铸牢中华民族共同体意识为现实关注,以中华优秀传统文化“接着讲”为核心命题,由此确立了本土化定位的基本依据。中华文化主体性意味着中国式现代化在打破“现代化=西方化”的迷思中确立了高度的主体自觉,在深化“第二个结合”的理解中坚定了强烈的文化自信,在推进全体人民精神富有的历程中找准了明确的价值目标,由此明确了现代化追求的内生动力。中华文化主体性渗透着世界文明交流互鉴的根本原则,蕴含着建设中华民族现代文明的世界意义,彰显着人类文明新形态的光明前景,由此展现了全球化发展的开放胸怀。中华文化主体性是新时代中国特色社会主义文化建设实现传统赓续发展、精神独立自主和文明交流互鉴三方面贯通融合、有机统一的充分彰显。 展开更多
关键词 文化主体性 本土化 第二个结合 现代化 全球化
下载PDF
聚焦可解释性:知识追踪模型综述与展望 被引量:3
8
作者 杨文阳 杨益慧 《现代教育技术》 CSSCI 2024年第5期53-63,共11页
模型的可解释性是评估其实用性和实际应用价值的重要指标,但目前基于深度学习的知识追踪模型普遍存在可解释性差的问题,导致教学决策过程不透明。对此,文章首先介绍了知识追踪的流程,分析了知识追踪模型的可解释性,并根据可解释性方法... 模型的可解释性是评估其实用性和实际应用价值的重要指标,但目前基于深度学习的知识追踪模型普遍存在可解释性差的问题,导致教学决策过程不透明。对此,文章首先介绍了知识追踪的流程,分析了知识追踪模型的可解释性,并根据可解释性方法在模型训练过程中作用的时间,将可解释知识追踪模型分为事前可解释的知识追踪模型和事后可解释的知识追踪模型。随后,文章分别对这两种模型进行再分类,并从优点、缺点两个维度,对不同类型的事前、事后可解释知识追踪模型进行了对比。最后,文章从模型可视化、融入教育规律、多模态数据融合、解释方法探索、可解释性评估等方面,对未来可解释知识追踪模型的教学应用进行了展望。文章的研究有助于提升知识追踪模型在教学中的实用性,推动教育数字化的进程。 展开更多
关键词 知识追踪 可解释性 全局可解释性 局部可解释性 智慧教育
下载PDF
基于三分支对抗学习和补偿注意力的红外和可见光图像融合
9
作者 邸敬 任莉 +2 位作者 刘冀钊 郭文庆 廉敬 《红外技术》 CSCD 北大核心 2024年第5期510-521,共12页
针对现有深度学习图像融合方法依赖卷积提取特征,并未考虑源图像全局特征,融合结果容易产生纹理模糊、对比度低等问题,本文提出一种基于三分支对抗学习和补偿注意力的红外和可见光图像融合方法。首先,生成器网络采用密集块和补偿注意力... 针对现有深度学习图像融合方法依赖卷积提取特征,并未考虑源图像全局特征,融合结果容易产生纹理模糊、对比度低等问题,本文提出一种基于三分支对抗学习和补偿注意力的红外和可见光图像融合方法。首先,生成器网络采用密集块和补偿注意力机制构建局部-全局三分支提取特征信息。然后,利用通道特征和空间特征变化构建补偿注意力机制提取全局信息,更进一步提取红外目标和可见光细节表征。其次,设计聚焦双对抗鉴别器,以确定融合结果和源图像之间的相似分布。最后,选用公开数据集TNO和RoadScene进行实验并与其他9种具有代表性的图像融合方法进行对比,本文提出的方法不仅获得纹理细节更清晰、对比度更好的融合结果,而且客观度量指标优于其他先进方法。 展开更多
关键词 红外可见光图像融合 局部-全局三分支 局部特征提取 补偿注意力机制 对抗学习 聚焦双对抗鉴别器
下载PDF
基于包络学习和分级结构一致性机制的不平衡集成算法 被引量:1
10
作者 李帆 张小恒 +1 位作者 李勇明 王品 《电子学报》 EI CAS CSCD 北大核心 2024年第3期751-761,共11页
集成方法是不平衡学习方法的重要分支,然而,现有不平衡集成方法均作用于原样本而没考虑样本的结构信息,因此其效能仍然有限.样本的结构信息包括局部和全局结构信息.为了解决上述问题,本文提出了一种基于深度样本包络网络(Deep Instance ... 集成方法是不平衡学习方法的重要分支,然而,现有不平衡集成方法均作用于原样本而没考虑样本的结构信息,因此其效能仍然有限.样本的结构信息包括局部和全局结构信息.为了解决上述问题,本文提出了一种基于深度样本包络网络(Deep Instance Envelope Network,DIEN)和分级结构一致性机制(Hierarchical Structure Consistency Mechanism,HSCM)的不平衡集成学习算法.该算法在考虑局部流形和全局结构信息的情况下,通过多层样本聚类,生成高质量的多层包络样本,从而实现类平衡化.首先,算法基于样本近邻拼接和模糊C均值聚类算法,设计DIEN来挖掘样本的结构信息,得到深度包络样本.然后,设计局部流形结构度量和全局结构分布度量来构建HSCM用于增强层间样本的分布一致性.接着,将DIEN和HSCM结合起来,构建出优化后的深度样本包络网络——DH(DIEN with HSCM).之后,将基分类器应用于包络样本.最后,设计bagging集成学习机制来融合基分类器的预测结果.文末组织了多组实验,采用了十多个公共数据集和有代表性的相关算法进行验证比较.实验结果表明,本文算法在AUC(Area Under Curve),F-measure等四个性能指标上显著最优. 展开更多
关键词 不平衡学习 包络学习 分级结构一致性机制 局部流形结构度量 全局结构分布度量
下载PDF
全局信息提取与重建的遥感图像语义分割网络
11
作者 梁龙学 贺成龙 +1 位作者 吴小所 闫浩文 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第11期2270-2279,2319,共11页
为了将遥感场景图像更好地进行分割,供给下游任务使用,提出多尺度注意力提取与全局信息重建网络.编码器引入多尺度卷积注意力骨干到遥感深度学习语义分割模型中.多尺度卷积注意力能够捕获多尺度信息,给解码器提供更丰富的全局深浅层信息... 为了将遥感场景图像更好地进行分割,供给下游任务使用,提出多尺度注意力提取与全局信息重建网络.编码器引入多尺度卷积注意力骨干到遥感深度学习语义分割模型中.多尺度卷积注意力能够捕获多尺度信息,给解码器提供更丰富的全局深浅层信息.在解码器,设计了全局多分支局部Transformer块.多尺度逐通道条带卷积重建多尺度空间上下文信息,弥补全局分支存在的空间信息割裂,与全局语义上下文信息共同重建全局信息分割图.解码器末端设计极化特征精炼头.通道上利用softmax和sigmoid组合,构建概率分布函数,拟合更好的输出分布,修复浅层中潜在的高分辨率信息损失,指导和融合深层信息,获得精细的空间纹理.实验结果表明,网络实现了很高的精确度,在ISPRS Vaihingen数据集上达到82.9%的平均交并比,在ISPRS Potsdam数据集上达到87.1%的平均交并比. 展开更多
关键词 语义分割 TRANSFORMER 多尺度卷积注意力 全局多分支局部注意力 全局信息重建
下载PDF
局部注意力引导下的全局池化残差分类网络
12
作者 姜文涛 董睿 张晟翀 《光电工程》 CAS CSCD 北大核心 2024年第7期107-124,共18页
大部分注意力机制虽然能增强图像特征,但没有考虑局部特征的关联性影响特征整体的问题。针对以上问题,本文提出局部注意力引导下的全局池化残差分类网络(MSLENet)。MSLENet的基线网络为ResNet34,首先改变首层结构,保留图像重要信息;其... 大部分注意力机制虽然能增强图像特征,但没有考虑局部特征的关联性影响特征整体的问题。针对以上问题,本文提出局部注意力引导下的全局池化残差分类网络(MSLENet)。MSLENet的基线网络为ResNet34,首先改变首层结构,保留图像重要信息;其次提出多分割局部增强注意力机制(MSLE)模块,MSLE模块将图像整体分割成多个小图像,增强每个小图像的局部特征,通过特征组交互的方式将局部重要特征引导到全局特征中;最后提出池化残差(PR)模块来处理ResNet残差结构丢失信息的问题,提高各层之间的信息利用率。实验结果表明,MSLENet通过增强局部特征的关联性,在多个数据集上均有良好的效果,有效地提高了网络的表达能力。 展开更多
关键词 图像分类 注意力机制 残差结构 局部特征 全局特征 关联性
下载PDF
基于跨模态交叉注意力网络的多模态情感分析方法 被引量:1
13
作者 王旭阳 王常瑞 +1 位作者 张金峰 邢梦怡 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第2期84-93,共10页
挖掘不同模态内信息和模态间信息有助于提升多模态情感分析的性能,本文为此提出一种基于跨模态交叉注意力网络的多模态情感分析方法。首先,利用VGG-16网络将多模态数据映射到全局特征空间;同时,利用Swin Transformer网络将多模态数据映... 挖掘不同模态内信息和模态间信息有助于提升多模态情感分析的性能,本文为此提出一种基于跨模态交叉注意力网络的多模态情感分析方法。首先,利用VGG-16网络将多模态数据映射到全局特征空间;同时,利用Swin Transformer网络将多模态数据映射到局部特征空间;其次,构造模态内自注意力和模态间交叉注意力特征;然后,设计一种跨模态交叉注意力融合模块实现不同模态内和模态间特征的深度融合,提升多模态特征表达的可靠性;最后,通过Softmax获得最终预测结果。在2个开源数据集CMU-MOSI和CMU-MSOEI上进行测试,本文模型在七分类任务上获得45.9%和54.1%的准确率,相比当前MCGMF模型,提升了0.66%和2.46%,综合性能提升显著。 展开更多
关键词 情感分析 多模态 跨模态交叉注意力 自注意力 局部和全局特征
下载PDF
局部-全局特征引导的图文多级关系分析与挖掘方法
14
作者 王海荣 郭瑞萍 +1 位作者 徐玺 周北京 《燕山大学学报》 CAS 北大核心 2024年第5期446-455,共10页
具有语义相关性的文本、图像数据往往具有互补性,可以从不同角度增强语义理解,因此,图文语义关系挖掘是图文数据得以充分利用的关键。为解决图文数据深层语义关系挖掘不充分、检索阶段预测不精准的问题,本文提出了一种局部-全局特征引... 具有语义相关性的文本、图像数据往往具有互补性,可以从不同角度增强语义理解,因此,图文语义关系挖掘是图文数据得以充分利用的关键。为解决图文数据深层语义关系挖掘不充分、检索阶段预测不精准的问题,本文提出了一种局部-全局特征引导的多级关系分析与挖掘方法。采用多头自注意力机制的Transformer建模图像关系,构建图像引导的文本注意力模块,挖掘图像区域和全局文本间的细粒度关系,融合局部-全局特征有效增强图文数据的语义关系。为验证本文方法,在Flickr30K、MSCOCO-1K和MSCOCO-3K数据集上进行实验,并与VSM、SGRAF等13种方法进行对比分析,本文方法中以文索图的召回率平均提升了0.62%,以图索文的召回率平均提高了0.5%,实验结果验证了本文方法的有效性。 展开更多
关键词 图文关系挖掘 多头自注意力机制 局部-全局特征
下载PDF
LEGAN:一种新的暗弱光照图像增强算法
15
作者 郭璠 刘文韬 +1 位作者 李小虎 唐琎 《计算机科学与探索》 CSCD 北大核心 2024年第9期2422-2435,共14页
针对暗弱光照图像所存在的亮度、对比度、信噪比低,以及噪声污染大等问题,提出了一种新的暗弱光照图像增强算法LEGAN。该算法将图像输入至所提伽马曲线估计网络求得包含伽马参数的特征图,再经过LEB模块增强亮度,并通过级联LEB的方式迭... 针对暗弱光照图像所存在的亮度、对比度、信噪比低,以及噪声污染大等问题,提出了一种新的暗弱光照图像增强算法LEGAN。该算法将图像输入至所提伽马曲线估计网络求得包含伽马参数的特征图,再经过LEB模块增强亮度,并通过级联LEB的方式迭代增强结果。采用基于PatchGAN的全局-局部判别器结构来提高图像分辨率和恢复图像细节。通过引入感知损失来限制真实标签和输出结果之间的差距,利用照明平滑度损失保持相邻像素之间的单调性关系,同时结合空间一致性损失来增强图像的空间相关性。实验结果表明,相比于现今大多数主流增强算法,该算法的细节还原度相对较高,且能有效避免增强后的图像出现局部亮度不佳等问题。 展开更多
关键词 暗弱光照 图像增强 伽马曲线估计网络 全局-局部判别器 损失函数
下载PDF
基于面部全局抑郁特征局部感知力增强和全局-局部语义相关性特征融合的抑郁强度识别
16
作者 孙强 李正 何浪 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2249-2263,共15页
现有基于深度学习的大多数方法在实现患者抑郁程度自动识别的过程中,主要存在两大挑战:(1)难以利用深度模型自动地从面部表情有效学习到抑郁强度相关的全局上下文信息,(2)往往忽略抑郁强度相关的全局和局部信息之间的语义一致性。为此,... 现有基于深度学习的大多数方法在实现患者抑郁程度自动识别的过程中,主要存在两大挑战:(1)难以利用深度模型自动地从面部表情有效学习到抑郁强度相关的全局上下文信息,(2)往往忽略抑郁强度相关的全局和局部信息之间的语义一致性。为此,该文提出一种全局抑郁特征局部感知力增强和全局-局部语义相关性特征融合(PLEGDF-FGLSCF)的抑郁强度识别深度模型。首先,设计了全局抑郁特征局部感知力增强(PLEGDF)模块,用于提取面部局部区域之间的语义相关性信息,促进不同局部区域与抑郁相关的信息之间的交互,从而增强局部抑郁特征驱动的全局抑郁特征表达力。然后,提出了全局-局部语义相关性特征融合(FGLSCF)模块,用于捕捉全局和局部语义信息之间的关联性,实现全局和局部抑郁特征之间的语义一致性描述。最后,在AVEC2013和AVEC2014数据集上,利用PLEGDF-FGLSCF模型获得的识别结果在均方根误差(RMSE)和平均绝对误差(MAE)指标上的值分别是7.75/5.96和7.49/5.99,优于大多数已有的基准模型,证实了该方法的合理性和有效性。 展开更多
关键词 抑郁强度 人脸图像 局部感知力增强 全局和局部特征融合 语义一致性
下载PDF
宽卷积局部特征扩展的Transformer网络故障诊断模型
17
作者 张新良 李占 周益天 《国外电子测量技术》 2024年第2期139-149,共11页
视觉Transformer网络的高精度诊断性能依赖于充分的训练数据,利用卷积网络在提取局部特征上的优势,构造能同时描述故障局部和全局特征的提取层,提高诊断模型的抗噪声干扰能力。首先,引入卷积网络模块将原始振动信号转换为Transformer网... 视觉Transformer网络的高精度诊断性能依赖于充分的训练数据,利用卷积网络在提取局部特征上的优势,构造能同时描述故障局部和全局特征的提取层,提高诊断模型的抗噪声干扰能力。首先,引入卷积网络模块将原始振动信号转换为Transformer网络可以直接接收的特征向量,提取故障局部特征,并通过增加卷积网络的感受野。然后,结合Transformer网络多头自注意力机制生成的全局信息,构建能同时描述故障局部和全局特征的特征向量。最后,在Transformer网络的预测层,利用高效通道注意力机制对特征向量的贡献度进行自动筛选。在西储大学(CWRU)轴承数据集上的故障诊断结果表明,在信噪比-4 dB的噪声干扰下,改进后的Transformer网络轴承故障诊断模型的准确率达90.21%,与原始Transformer模型相比,准确率提高了13.2%,在噪声环境下表现出优异的诊断性能。 展开更多
关键词 轴承故障诊断 视觉Transformer 宽卷积核 自注意力机制 局部-全局特征 高效通道注意力
下载PDF
全局与局部多尺度特征融合晶圆缺陷分类网络
18
作者 陈晓雷 李正成 +2 位作者 杨富龙 温润玉 沈星阳 《电子测量与仪器学报》 CSCD 北大核心 2024年第10期159-169,共11页
在半导体制造领域,晶圆缺陷分类是确保产品质量的重要步骤。然而,由于晶圆缺陷的多样性和复杂性,现有的混合型晶圆缺陷分类网络在准确性上仍然存在不足。针对这一问题,提出了一种基于全局和局部多尺度特征融合的混合型晶圆缺陷分类网络... 在半导体制造领域,晶圆缺陷分类是确保产品质量的重要步骤。然而,由于晶圆缺陷的多样性和复杂性,现有的混合型晶圆缺陷分类网络在准确性上仍然存在不足。针对这一问题,提出了一种基于全局和局部多尺度特征融合的混合型晶圆缺陷分类网络—MLG-Net。MLG-Net由3个主要模块组成:特征提取模块、全局分支和局部分支。该网络旨在更好地提取和利用晶圆缺陷图像的全局语义信息与局部细节特征,这两种特征通过多尺度特征融合技术相结合,最终形成一个更加全面的特征表示,有助于分类器在面对复杂混合缺陷时,做出更为准确的判断,从而提升分类精度。为了验证MLG-Net的有效性,在包含38种混合类型缺陷的数据集—MixedWM38上进行了大量实验,其分类准确度达到98.84%。结果表明,MLG-Net在综合性能上优于当前主流的六种晶圆缺陷分类方法。这一结果证明了全局与局部特征融合在处理混合型晶圆缺陷分类任务中的重要性和有效性。 展开更多
关键词 半导体制造 晶圆缺陷分类 混合型缺陷 全局与局部特征 特征融合
下载PDF
结合CSWin-Transformer和门卷积的壁画图像修复方法
19
作者 徐志刚 杨欣宇 《计算机工程与应用》 CSCD 北大核心 2024年第21期215-224,共10页
敦煌壁画是珍贵的文化遗产,但现存壁画存在着大量破损现象。针对现有图像修复方法在处理敦煌壁画时面临着计算复杂度高、纹理模糊和特征提取不足等问题,提出了一种结合CSWin-Transformer(cross stripe window-Transformer)和门卷积的壁... 敦煌壁画是珍贵的文化遗产,但现存壁画存在着大量破损现象。针对现有图像修复方法在处理敦煌壁画时面临着计算复杂度高、纹理模糊和特征提取不足等问题,提出了一种结合CSWin-Transformer(cross stripe window-Transformer)和门卷积的壁画图像修复方法。构建由全局层网络和局部层门卷积残差密集网络组成的并行网络,利用条纹窗口增强图像特征提取能力,并通过门卷积残差块提升结构纹理修复的准确性。设计全局-局部特征融合模块来融合全局层和局部层输出的特征图像,以保持修复结果整体的一致性。通过建立共享注意力机制实现全局层和局部层之间的信息交互,同时为了完成破损壁画的修复,采用谱归一化马尔科夫判别模型进行对抗训练。通过对真实破损壁画的修复实验,结果表明,所提方法在主客观指标上均优于所对比的方法。 展开更多
关键词 深度学习 壁画修复 门卷积 CSWin-Transformer 全局-局部特征融合
下载PDF
集成全局局部特征交互与角动量机制的端到端多目标跟踪算法
20
作者 计忠平 王相威 +3 位作者 何志伟 杜晨杰 金冉 柴本成 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第9期3703-3712,共10页
针对多目标跟踪(MOT)算法性能对于检测准确度和数据关联策略的依赖性问题,该文提出一种新的端到端算法。在检测方面,首先基于特征金字塔网络,提出空间残差特征金字塔模块(SRFPN),以提升特征融合和信息传递的效率。随后,引入全局局部特... 针对多目标跟踪(MOT)算法性能对于检测准确度和数据关联策略的依赖性问题,该文提出一种新的端到端算法。在检测方面,首先基于特征金字塔网络,提出空间残差特征金字塔模块(SRFPN),以提升特征融合和信息传递的效率。随后,引入全局局部特征交互模块(GLFIM)来平衡局部细节和全局上下文信息,增强多尺度特征的专注度,提高模型对目标尺度变化的适应性。在关联方面,引入角动量机制(AMM),充分考虑目标运动方向,以提升连续帧之间目标匹配的精确性。在MOT17和UAVDT数据集上进行实验验证,所提跟踪器的检测性能和关联性能均显著提升,并且在目标遮挡、尺度变化和杂乱背景等复杂场景下表现出良好的鲁棒性。 展开更多
关键词 目标跟踪 特征金字塔网络 全局局部特征交互 角动量
下载PDF
上一页 1 2 140 下一页 到第
使用帮助 返回顶部