Short baseline system (SBL), which is a kind of underwater acoustic locating technology, has widely applicable value. In order to examine the capability of ship model design, the ship model experimentation should have...Short baseline system (SBL), which is a kind of underwater acoustic locating technology, has widely applicable value. In order to examine the capability of ship model design, the ship model experimentation should have high accuracy. This paper focuses on the key techniques of high accuracy locating system, including high accuracy sub-array position emendation, divisional locating, anti multi-path interference measure, etc. Experiments show that the SBL locating systems has received the satisfying effect owing to these key techniques proposed in this paper.展开更多
Complex event processing (CEP) can extract meaningful events for real-time locating system (RTLS) applications. To identify complex event accurately in RTLS, we propose a new RFID complex event processing method GEEP,...Complex event processing (CEP) can extract meaningful events for real-time locating system (RTLS) applications. To identify complex event accurately in RTLS, we propose a new RFID complex event processing method GEEP, which is based on the timed automata (TA) theory. By devising RFID locating application into complex events, we model the timing diagram of RFID data streams based on the TA. We optimize the constraint of the event streams and propose a novel method to derive the constraint between objects, as well as the constraint between object and location. Experiments prove the proposed method reduces the cost of RFID complex event processing, and improves the efficiency of the RTLS.展开更多
This paper studies on the Partial Discharge (PD) Locating System based on a mobile array of ultra-high frequency (UHF) antennas and a vehicle-mounted PD locating system is established. The system consists of omni-dire...This paper studies on the Partial Discharge (PD) Locating System based on a mobile array of ultra-high frequency (UHF) antennas and a vehicle-mounted PD locating system is established. The system consists of omni-directional antenna array for receiving UHF PD signals, a pre-processing circuit for signal amplification and filtering and the high- speed acquisition and control unit of PD pulse signals. The developed locating system is able to simultaneously record the PD pulse signals received by the antenna array. By assessing the time difference of arrival (TDOA), the two-dimensional hyperbolic locating model quickly locates the PD source. Based on the software developed by LabVIEW, it is also possible to display, store and further analyze the acquired signals. Through the simulation of PD signals and the locating experiments with the system, it is proved that the PD locating system possesses the features of rapidity and precision in determining the bearing of PD source.展开更多
Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on...Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on-site launching and generates real-time location data,enabling fire rescuers to arrive at the intended spot faster and correctly for effective and precise rescue.Auto-positioning with step-by-step instructions is proposed when launching the locating system,while no extra measuring instrument like Total Station(TS)is needed.Real-time location tracking is provided via a 3D space real-time locating system(RTLS)constructed using Ultra-wide Bandwidth technology(UWB),which requires electromagnetic waves to pass through concrete walls.A hybrid weighted least squares with a time difference of arrival(WLS/TDOA)positioning method is proposed to address real path-tracking issues in 3D space and to meet RTLS requirements for quick computing in real-world applications.The 3D WLS/TDOA algorithm is theoretically constructed with the Cramer-Rao lower bound(CRLB).The computing complexity is reduced to the lower bound for embedded hardware to directly compute the time differential of the arriving signals using the time-to-digital converter(TDC).The results of the experiments show that the errors are controlled when the positioning algorithm is applied in various complicated situations to fulfill the requirements of engineering applications.The statistical analysis of the data reveals that the proposed UWB RTLS auto-positioning system can track target tags with an accuracy of 0.20 m.展开更多
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t...In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.展开更多
The development of machine learning technology enables more robust real-time earthquake monitoring through automated implementations. However, the application of machine learning to earthquake location problems faces ...The development of machine learning technology enables more robust real-time earthquake monitoring through automated implementations. However, the application of machine learning to earthquake location problems faces challenges in regions with limited available training data. To address the issues of sparse event distribution and inaccurate ground truth in historical seismic datasets, we expand the training dataset by using a large number of synthetic envelopes that closely resemble real data and build an earthquake location model named ENVloc. We propose an envelope-based machine learning workflow for simultaneously determining earthquake location and origin time. The method eliminates the need for phase picking and avoids the accumulation of location errors resulting from inaccurate picking results. In practical application, ENVloc is applied to several data intercepted at different starting points. We take the starting point of the time window corresponding to the highest prediction probability value as the origin time and save the predicted result as the earthquake location. We apply ENVloc to observed data acquired in the southern Sichuan Basin, China, between September 2018 and March 2019. The results show that the average difference with the catalog in latitude, longitude, depth, and origin time is 0.02°,0.02°, 2 km, and 1.25 s, respectively. These suggest that our envelope-based method provides an efficient and robust way to locate earthquakes without phase picking, and can be used in earthquake monitoring in near-real time.展开更多
This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sp...This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sparse representation and entropy weight method.Three different electrical quantities are selected as observations in the compressed sensing algorithm.The entropy weighting method is employed to calculate the weights of different observations based on their relative disturbance levels.Subsequently,by leveraging the topological information of the power system and pre-designing an overcomplete dictionary of disturbances based on the corresponding system parameter variations caused by disturbances,an improved Joint Generalized Orthogonal Matching Pursuit(J-GOMP)algorithm is utilized for reconstruction.The reconstructed sparse vectors are divided into three parts.If at least two parts have consistent node identifiers,the node is identified as the disturbance node.If the node identifiers in all three parts are inconsistent,further analysis is conducted considering the weights to determine the disturbance node.Simulation results based on the IEEE 39-bus system model demonstrate that the proposed method,utilizing electrical quantity information from only 8 measurement points,effectively locates disturbance positions and is applicable to various disturbance types with strong noise resistance.展开更多
A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine i...A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine is introduced, and the workpiece locating system and the post processing system of the cutter location (CL) data file are analyzed. The new machine has advantages of low costs, simple structure, good rigidity, and high precision. It is easy to be transformed and used to process the workpiece with a complex surface.展开更多
As an important parameter in the single airborne passive locating system, the rate of phase difference change contains range information of the radio emitter. Taking single carrier sine pulse signals as an example, th...As an important parameter in the single airborne passive locating system, the rate of phase difference change contains range information of the radio emitter. Taking single carrier sine pulse signals as an example, this article illustrates the principle of passive location through measurement of rates of phase difference change and analyzes the structure of measurement errors. On the basis of the Cramér-Rao lower bound (CRLB), an algorithm associated with time-chips is proposed to determine the rates of pha...展开更多
Here is reported an iteration method, which corrects the coordinates of an underwater moving target obtained by a hyperbolic locating system with a short-baseline plane array when the sound velocity varies with depth....Here is reported an iteration method, which corrects the coordinates of an underwater moving target obtained by a hyperbolic locating system with a short-baseline plane array when the sound velocity varies with depth. A series of differential difference equations are used for determining the iterative values. The calculated results show that under the same conditions, the location error is about several meters or tens of meters without correction and less than 0.5 m with correction. The method can be applied to various types of arrays.展开更多
A time-of-arrival(TOA) system based on GPS technology for locating VHF radiation sources from lightning has been developed and used in observation sites in the northern Shandong Province,China.The 3D images of the lig...A time-of-arrival(TOA) system based on GPS technology for locating VHF radiation sources from lightning has been developed and used in observation sites in the northern Shandong Province,China.The 3D images of the lightning progression have been obtained successfully for the first time in China.The 3D-channel evolutions of typical negative CG,positive CG and IC lightning flashes have been discussed together with the data of fast electric field change.It was found that significant differences existed between the negative and positive CG lightning flashes in terms of the initiation and propagation of the radiation sources.The preliminary breakdown of a negative CG lightning flash propagated at a speed about 5.2×104 m/s.The stepped leader of negative CG lightning flashes was trigged by negative initial breakdown.Thereafter,it propagated downward at a speed of 1.3×105 m/s.The initial process of the positive CG lightning flashes was also a propagation process of negative streamer.These streamers propagated dominantly horizontally in the positive charge region and accumulated positive charges at the origin of the lightning,and as a consequence,initiated downward positive streamers.A new type of lightning discharge that was triggered by a narrow bipolar pulse(NBP) is discussed in this study.The NBP was originated at altitude of about 10.5 km in the upper positive charge region.As a distinct difference from normal IC flash,its channels extended horizontally all around and produced a lot of radiation sources.The source power of the NBP could approach 16.7 kW,which is much greater than that of normal lightning discharge ranging between 100 mW and 500 W.The 3D propagation of this new type of lightning discharge was observed and obtained for the first time in China.The possible initiation mechanism of this new type of light-ning is discussed here.展开更多
Based on the VHF lightning locating system,a three-dimensional-space cell-gridded approach is used to extract the lighting channel and calculate the length of the channel.Through clustering of the located radiation so...Based on the VHF lightning locating system,a three-dimensional-space cell-gridded approach is used to extract the lighting channel and calculate the length of the channel.Through clustering of the located radiation sources and then extracting the lightning channel,it can accurately obtain the length of the channel.To validate the feasibility of the approach,a simulation experiment is designed,and it shows the length error is no more than 10%.The relationship between the NO production of per unit arc length and atmospheric pressure obtained in laboratory is applied to the NOX production of per unit flash length at different altitudes in this paper.The channel length and the NOX production of 11 negative cloud-to-ground flashes and 59 intracloud flashes in an isolated thunderstorm in the northeastern Qinghai-Tibet Plateau are calculated.The results show that the average channel lengths of per cloud-to-ground and intracloud flash are 28.9 and 22.3 km respectively;the average NOX productions of per cloud-to-ground and intracloud flash are 1.89×1025 and 0.42×1025 molecules,respectively.展开更多
An integrated method for identifying the propagation of multi-loop process oscillations and their source location is proposed in this paper. Oscillatory process loop variables are automatically selected based on the c...An integrated method for identifying the propagation of multi-loop process oscillations and their source location is proposed in this paper. Oscillatory process loop variables are automatically selected based on the component-related ratio index and a mixing matrix, both of which are obtained in data preprocessing by spectral independent component analysis. The complex causality among oscillatory process variables is then revealed by Granger causality test and is visualized in the form of causality diagram. The simplification of causal connectivity in the diagram is performed according to the understanding of process knowledge and the final simplest causality diagram, which represents the main oscillation propagation paths, is achieved by the automated cutting-off thresh-old search, with which less significant causality pathways are filtered out. The source of the oscillation disturbance can be identified intuitively through the final causality diagram. Both simulated and real plant data tests are presented to demonstrate the effectiveness and feasibility of the proposed method.展开更多
It is currently prevalent to locate faults for a satellite power system based on an expert system, not utilizing all the available information provided by tests. The casual network model for a satellite power system i...It is currently prevalent to locate faults for a satellite power system based on an expert system, not utilizing all the available information provided by tests. The casual network model for a satellite power system is presented. Considerations for failure probability of each component of the power system, the cost of applying each test, the influence of a precedent test result on the next test selection, and an optimal sequential testing algorithm for fault location is presented. This program is applied to locate the failure component of the power system of a satellite. The results show this program is very effective and it is very fast to generate an optimal diagnosis tree.展开更多
To improve the efficiency and accuracy of single-event effect(SEE)research at the Heavy Ion Research Facility at Lanzhou,Hi’Beam-SEE must precisely localize the position at which each heavy ion hitting the integrated...To improve the efficiency and accuracy of single-event effect(SEE)research at the Heavy Ion Research Facility at Lanzhou,Hi’Beam-SEE must precisely localize the position at which each heavy ion hitting the integrated circuit(IC)causes SEE.In this study,we propose a fast multi-track location(FML)method based on deep learning to locate the position of each particle track with high speed and accuracy.FML can process a vast amount of data supplied by Hi’Beam-SEE online,revealing sensitive areas in real time.FML is a slot-based object-centric encoder-decoder structure in which each slot can learn the location information of each track in the image.To make the method more accurate for real data,we designed an algorithm to generate a simulated dataset with a distribution similar to that of the real data,which was then used to train the model.Extensive comparison experiments demonstrated that the FML method,which has the best performance on simulated datasets,has high accuracy on real datasets as well.In particular,FML can reach 238 fps and a standard error of 1.6237μm.This study discusses the design and performance of FML.展开更多
A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS). At the CAS-LIBB microbeam facility, we have developed protocols to ...A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS). At the CAS-LIBB microbeam facility, we have developed protocols to place exact numbers of charged particles through nuclear centroids of cells, at defined positions in the cytoplasm relative to the nucleus, and through defined fractions of cells in a population. In this paper, we address the methods for nucleus, cytoplasm and bystander (either a single or an exact number of ions is delivered to a certain percentage of cells in a population to study the bystander effects of radiation) irradiation in detail from the precision of target finding and cell locating in the image analysis system. Moreover, for cells touching slightly in an image, a watershed method is used to separate these touching objects; after that, the number of objects in an image is counted accurately and the irradiation points are located precisely.展开更多
Using the acoustic emission locating technology to monitor the health of the structure is important for ensuring the continuous and healthy operation of the complex engineering structures and large mechanical equipmen...Using the acoustic emission locating technology to monitor the health of the structure is important for ensuring the continuous and healthy operation of the complex engineering structures and large mechanical equipment. In this paper, four fiber Bragg grating(FBG) sensors are used to establish the sensor array to locate the acoustic emission source. Firstly, the nonlinear locating equations are established based on the principle of acoustic emission, and the solution of these equations is transformed into an optimization problem. Secondly, time difference extraction algorithm based on the phase transform(PHAT) weighted generalized cross correlation provides the necessary conditions for the accurate localization. Finally, the genetic algorithm(GA) is used to solve the optimization model. In this paper, twenty points are tested in the marble plate surface, and the results show that the absolute locating error is within the range of 10 mm, which proves the accuracy of this locating method.展开更多
Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared...Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared with commonly used schemes involving dedicated devices or complicated techniques,a convenient approach for breakdown locating based on transmission line(TL)theory offers advantages in the typical constant-gradient TW-accelerating structure.To deliver such an approach,an equivalent TL model has been constructed to equate the TW-accelerating structure based on the fun-damental theory of the TL transient response in the time domain.An equivalence relationship between the TW-accelerating structure and the TL model has been established via analytical derivations associated with grid charts and verified by TL circuit simulations.Furthermore,to validate the proposed fault-locating method in practical applications,an elaborate analysis via such a method has been conducted for the recoverable RF-breakdown phenomena observed at an existing prototype of a TW-accelerating-structure-based beam injector constructed at the Huazhong University of Science and Technology.In addition,further considerations and discussion for extending the applications of the proposed method have been given.This breakdown-locating approach involving the transient response in the framework of TL theory can be a conceivable supple-ment to existing methods,facilitating solution to construction problems at an affordable cost.展开更多
A low-frequency magnetic lightning mapping system(LFM-LMS)was built during the SHAndong Triggered Lightning Experiment(SHATLE),based on continuous measurements of magnetic field radiation from lightning.The hardware a...A low-frequency magnetic lightning mapping system(LFM-LMS)was built during the SHAndong Triggered Lightning Experiment(SHATLE),based on continuous measurements of magnetic field radiation from lightning.The hardware and source-mapping techniques used by the LFM-LMS were introduced;both Monte Carlo simulations and the observation of rocket-triggered lightning examples were employed to examine the location accuracy and detection effectiveness of the LFM-LMS.We estimated that the system’s location accuracy about 100−200 m horizontally and~200 m vertically.A natural intra-cloud lightning flash and a rocket-triggered lightning flash,both with intricate structures and discharging processes,were examined using the three-dimensional mapping results.The progressing path of negative lightning leaders is usually well-defined,and its propagation speed is estimated to be(0.5−1.4)×10^(6)m/s.In summary,the LFM-LMS can reconstruct the three-dimensional morphology of lightning flashes;this technology provides a efficient method for investigating the characteristics of lightning development,as well as the overall electrical strucuture of thunderstorms.展开更多
Aiming at the problem that most of the cables in the power collection systemof offshore wind farms are buried deep in the seabed,whichmakes it difficult to detect faults,this paper proposes a two-step fault location m...Aiming at the problem that most of the cables in the power collection systemof offshore wind farms are buried deep in the seabed,whichmakes it difficult to detect faults,this paper proposes a two-step fault location method based on compressed sensing and ranging equation.The first step is to determine the fault zone through compressed sensing,and improve the datameasurement,dictionary design and algorithmreconstruction:Firstly,the phase-locked loop trigonometric functionmethod is used to suppress the spike phenomenon when extracting the fault voltage,so that the extracted voltage valuewillnot have a large error due to the voltage fluctuation.Secondly,theλ-NIM dictionary is designed by using the node impedancematrix and the fault location coefficient to further reduce the influence of pseudo-fault points.Finally,the CoSaMP algorithmis improved with the generalized Jaccard coefficient to improve the reconstruction accuracy.The second step is to use the ranging equation to accurately locate the asymmetric fault of the wind farm collection system on the basis of determining the fault interval.The simulation results show that the proposedmethod ismore accurate than the compressedsensingmethod andimpedancemethod in fault section location and fault location accuracy,the relative error is reduced from 0.75%to 0.4%,and has a certain anti-noise ability.展开更多
文摘Short baseline system (SBL), which is a kind of underwater acoustic locating technology, has widely applicable value. In order to examine the capability of ship model design, the ship model experimentation should have high accuracy. This paper focuses on the key techniques of high accuracy locating system, including high accuracy sub-array position emendation, divisional locating, anti multi-path interference measure, etc. Experiments show that the SBL locating systems has received the satisfying effect owing to these key techniques proposed in this paper.
文摘Complex event processing (CEP) can extract meaningful events for real-time locating system (RTLS) applications. To identify complex event accurately in RTLS, we propose a new RFID complex event processing method GEEP, which is based on the timed automata (TA) theory. By devising RFID locating application into complex events, we model the timing diagram of RFID data streams based on the TA. We optimize the constraint of the event streams and propose a novel method to derive the constraint between objects, as well as the constraint between object and location. Experiments prove the proposed method reduces the cost of RFID complex event processing, and improves the efficiency of the RTLS.
文摘This paper studies on the Partial Discharge (PD) Locating System based on a mobile array of ultra-high frequency (UHF) antennas and a vehicle-mounted PD locating system is established. The system consists of omni-directional antenna array for receiving UHF PD signals, a pre-processing circuit for signal amplification and filtering and the high- speed acquisition and control unit of PD pulse signals. The developed locating system is able to simultaneously record the PD pulse signals received by the antenna array. By assessing the time difference of arrival (TDOA), the two-dimensional hyperbolic locating model quickly locates the PD source. Based on the software developed by LabVIEW, it is also possible to display, store and further analyze the acquired signals. Through the simulation of PD signals and the locating experiments with the system, it is proved that the PD locating system possesses the features of rapidity and precision in determining the bearing of PD source.
文摘Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on-site launching and generates real-time location data,enabling fire rescuers to arrive at the intended spot faster and correctly for effective and precise rescue.Auto-positioning with step-by-step instructions is proposed when launching the locating system,while no extra measuring instrument like Total Station(TS)is needed.Real-time location tracking is provided via a 3D space real-time locating system(RTLS)constructed using Ultra-wide Bandwidth technology(UWB),which requires electromagnetic waves to pass through concrete walls.A hybrid weighted least squares with a time difference of arrival(WLS/TDOA)positioning method is proposed to address real path-tracking issues in 3D space and to meet RTLS requirements for quick computing in real-world applications.The 3D WLS/TDOA algorithm is theoretically constructed with the Cramer-Rao lower bound(CRLB).The computing complexity is reduced to the lower bound for embedded hardware to directly compute the time differential of the arriving signals using the time-to-digital converter(TDC).The results of the experiments show that the errors are controlled when the positioning algorithm is applied in various complicated situations to fulfill the requirements of engineering applications.The statistical analysis of the data reveals that the proposed UWB RTLS auto-positioning system can track target tags with an accuracy of 0.20 m.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.112-2221-E-011-115 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei 10607,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciated.
文摘In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.
基金the financial support of the National Key R&D Program of China(2021YFC3000701)the China Seismic Experimental Site in Sichuan-Yunnan(CSES-SY)for providing data for this study.
文摘The development of machine learning technology enables more robust real-time earthquake monitoring through automated implementations. However, the application of machine learning to earthquake location problems faces challenges in regions with limited available training data. To address the issues of sparse event distribution and inaccurate ground truth in historical seismic datasets, we expand the training dataset by using a large number of synthetic envelopes that closely resemble real data and build an earthquake location model named ENVloc. We propose an envelope-based machine learning workflow for simultaneously determining earthquake location and origin time. The method eliminates the need for phase picking and avoids the accumulation of location errors resulting from inaccurate picking results. In practical application, ENVloc is applied to several data intercepted at different starting points. We take the starting point of the time window corresponding to the highest prediction probability value as the origin time and save the predicted result as the earthquake location. We apply ENVloc to observed data acquired in the southern Sichuan Basin, China, between September 2018 and March 2019. The results show that the average difference with the catalog in latitude, longitude, depth, and origin time is 0.02°,0.02°, 2 km, and 1.25 s, respectively. These suggest that our envelope-based method provides an efficient and robust way to locate earthquakes without phase picking, and can be used in earthquake monitoring in near-real time.
基金funded by the State Grid Jilin Economic Research Institute’s 2022 Practical Re-Search Project on the Construction of Long-Term Power Supply Guarantee Mechanism in Provincial Capital Cities under the New Situation,Grant Number SGJLJY00GPJS2200041.
文摘This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sparse representation and entropy weight method.Three different electrical quantities are selected as observations in the compressed sensing algorithm.The entropy weighting method is employed to calculate the weights of different observations based on their relative disturbance levels.Subsequently,by leveraging the topological information of the power system and pre-designing an overcomplete dictionary of disturbances based on the corresponding system parameter variations caused by disturbances,an improved Joint Generalized Orthogonal Matching Pursuit(J-GOMP)algorithm is utilized for reconstruction.The reconstructed sparse vectors are divided into three parts.If at least two parts have consistent node identifiers,the node is identified as the disturbance node.If the node identifiers in all three parts are inconsistent,further analysis is conducted considering the weights to determine the disturbance node.Simulation results based on the IEEE 39-bus system model demonstrate that the proposed method,utilizing electrical quantity information from only 8 measurement points,effectively locates disturbance positions and is applicable to various disturbance types with strong noise resistance.
文摘A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine is introduced, and the workpiece locating system and the post processing system of the cutter location (CL) data file are analyzed. The new machine has advantages of low costs, simple structure, good rigidity, and high precision. It is easy to be transformed and used to process the workpiece with a complex surface.
基金Aeronautical Science Foundation of China (2007ZC53030)
文摘As an important parameter in the single airborne passive locating system, the rate of phase difference change contains range information of the radio emitter. Taking single carrier sine pulse signals as an example, this article illustrates the principle of passive location through measurement of rates of phase difference change and analyzes the structure of measurement errors. On the basis of the Cramér-Rao lower bound (CRLB), an algorithm associated with time-chips is proposed to determine the rates of pha...
文摘Here is reported an iteration method, which corrects the coordinates of an underwater moving target obtained by a hyperbolic locating system with a short-baseline plane array when the sound velocity varies with depth. A series of differential difference equations are used for determining the iterative values. The calculated results show that under the same conditions, the location error is about several meters or tens of meters without correction and less than 0.5 m with correction. The method can be applied to various types of arrays.
基金supported by National Natural Science Foundation of China (Grant No.40775004)Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-206-2)the R & D Special Fund for Public Welfare Industry (meteorology) (Grant No.GYHY2007622)
文摘A time-of-arrival(TOA) system based on GPS technology for locating VHF radiation sources from lightning has been developed and used in observation sites in the northern Shandong Province,China.The 3D images of the lightning progression have been obtained successfully for the first time in China.The 3D-channel evolutions of typical negative CG,positive CG and IC lightning flashes have been discussed together with the data of fast electric field change.It was found that significant differences existed between the negative and positive CG lightning flashes in terms of the initiation and propagation of the radiation sources.The preliminary breakdown of a negative CG lightning flash propagated at a speed about 5.2×104 m/s.The stepped leader of negative CG lightning flashes was trigged by negative initial breakdown.Thereafter,it propagated downward at a speed of 1.3×105 m/s.The initial process of the positive CG lightning flashes was also a propagation process of negative streamer.These streamers propagated dominantly horizontally in the positive charge region and accumulated positive charges at the origin of the lightning,and as a consequence,initiated downward positive streamers.A new type of lightning discharge that was triggered by a narrow bipolar pulse(NBP) is discussed in this study.The NBP was originated at altitude of about 10.5 km in the upper positive charge region.As a distinct difference from normal IC flash,its channels extended horizontally all around and produced a lot of radiation sources.The source power of the NBP could approach 16.7 kW,which is much greater than that of normal lightning discharge ranging between 100 mW and 500 W.The 3D propagation of this new type of lightning discharge was observed and obtained for the first time in China.The possible initiation mechanism of this new type of light-ning is discussed here.
基金supported by the National Natural Science Foundation of Chi-na(Grant Nos.41075002,40775004,41030960)R&D Special Fund for Public Welfare Industry(Meteorology)(Grant No.GYHY201006005-03)
文摘Based on the VHF lightning locating system,a three-dimensional-space cell-gridded approach is used to extract the lighting channel and calculate the length of the channel.Through clustering of the located radiation sources and then extracting the lightning channel,it can accurately obtain the length of the channel.To validate the feasibility of the approach,a simulation experiment is designed,and it shows the length error is no more than 10%.The relationship between the NO production of per unit arc length and atmospheric pressure obtained in laboratory is applied to the NOX production of per unit flash length at different altitudes in this paper.The channel length and the NOX production of 11 negative cloud-to-ground flashes and 59 intracloud flashes in an isolated thunderstorm in the northeastern Qinghai-Tibet Plateau are calculated.The results show that the average channel lengths of per cloud-to-ground and intracloud flash are 28.9 and 22.3 km respectively;the average NOX productions of per cloud-to-ground and intracloud flash are 1.89×1025 and 0.42×1025 molecules,respectively.
基金Supported by the National Natural Science Foundation of China (60974061).
文摘An integrated method for identifying the propagation of multi-loop process oscillations and their source location is proposed in this paper. Oscillatory process loop variables are automatically selected based on the component-related ratio index and a mixing matrix, both of which are obtained in data preprocessing by spectral independent component analysis. The complex causality among oscillatory process variables is then revealed by Granger causality test and is visualized in the form of causality diagram. The simplification of causal connectivity in the diagram is performed according to the understanding of process knowledge and the final simplest causality diagram, which represents the main oscillation propagation paths, is achieved by the automated cutting-off thresh-old search, with which less significant causality pathways are filtered out. The source of the oscillation disturbance can be identified intuitively through the final causality diagram. Both simulated and real plant data tests are presented to demonstrate the effectiveness and feasibility of the proposed method.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2002AA721063).
文摘It is currently prevalent to locate faults for a satellite power system based on an expert system, not utilizing all the available information provided by tests. The casual network model for a satellite power system is presented. Considerations for failure probability of each component of the power system, the cost of applying each test, the influence of a precedent test result on the next test selection, and an optimal sequential testing algorithm for fault location is presented. This program is applied to locate the failure component of the power system of a satellite. The results show this program is very effective and it is very fast to generate an optimal diagnosis tree.
基金supported by the National Natural Science Foundation of China (Nos.U2032209,11975292,12222512)the National Key Research and Development Program of China (2021YFA1601300)+2 种基金the CAS“Light of West China”Programthe CAS Pioneer Hundred Talent Programthe Guangdong Major Project of Basic and Applied Basic Research (No.2020B0301030008)。
文摘To improve the efficiency and accuracy of single-event effect(SEE)research at the Heavy Ion Research Facility at Lanzhou,Hi’Beam-SEE must precisely localize the position at which each heavy ion hitting the integrated circuit(IC)causes SEE.In this study,we propose a fast multi-track location(FML)method based on deep learning to locate the position of each particle track with high speed and accuracy.FML can process a vast amount of data supplied by Hi’Beam-SEE online,revealing sensitive areas in real time.FML is a slot-based object-centric encoder-decoder structure in which each slot can learn the location information of each track in the image.To make the method more accurate for real data,we designed an algorithm to generate a simulated dataset with a distribution similar to that of the real data,which was then used to train the model.Extensive comparison experiments demonstrated that the FML method,which has the best performance on simulated datasets,has high accuracy on real datasets as well.In particular,FML can reach 238 fps and a standard error of 1.6237μm.This study discusses the design and performance of FML.
基金The project supported by the National Major Technologies R&D Program of China for the 10th Five-Year Plan Period (No.2001BA302B)the magnitude instrument development project of the Chinese Academy of Sciences, the National Natural Science Foundation of China (No. 19875054)the National Science Fund for Distinguished Young Scholars (No. 10225526)
文摘A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS). At the CAS-LIBB microbeam facility, we have developed protocols to place exact numbers of charged particles through nuclear centroids of cells, at defined positions in the cytoplasm relative to the nucleus, and through defined fractions of cells in a population. In this paper, we address the methods for nucleus, cytoplasm and bystander (either a single or an exact number of ions is delivered to a certain percentage of cells in a population to study the bystander effects of radiation) irradiation in detail from the precision of target finding and cell locating in the image analysis system. Moreover, for cells touching slightly in an image, a watershed method is used to separate these touching objects; after that, the number of objects in an image is counted accurately and the irradiation points are located precisely.
基金supported by the National Natural Science Foundation of China(No.41472260)the Fundamental Research Funds of Shandong University(No.2016JC012)the Young Scholars Program of Shandong University(No.2016WLJH30)
文摘Using the acoustic emission locating technology to monitor the health of the structure is important for ensuring the continuous and healthy operation of the complex engineering structures and large mechanical equipment. In this paper, four fiber Bragg grating(FBG) sensors are used to establish the sensor array to locate the acoustic emission source. Firstly, the nonlinear locating equations are established based on the principle of acoustic emission, and the solution of these equations is transformed into an optimization problem. Secondly, time difference extraction algorithm based on the phase transform(PHAT) weighted generalized cross correlation provides the necessary conditions for the accurate localization. Finally, the genetic algorithm(GA) is used to solve the optimization model. In this paper, twenty points are tested in the marble plate surface, and the results show that the absolute locating error is within the range of 10 mm, which proves the accuracy of this locating method.
基金supported by the National Natural Science Foundation of China(No.11905074).
文摘Radio-frequency(RF)breakdown analysis and location are critical for successful development of high-gradient traveling-wave(TW)accelerators,especially those expected to generate high-intensity,high-power beams.Compared with commonly used schemes involving dedicated devices or complicated techniques,a convenient approach for breakdown locating based on transmission line(TL)theory offers advantages in the typical constant-gradient TW-accelerating structure.To deliver such an approach,an equivalent TL model has been constructed to equate the TW-accelerating structure based on the fun-damental theory of the TL transient response in the time domain.An equivalence relationship between the TW-accelerating structure and the TL model has been established via analytical derivations associated with grid charts and verified by TL circuit simulations.Furthermore,to validate the proposed fault-locating method in practical applications,an elaborate analysis via such a method has been conducted for the recoverable RF-breakdown phenomena observed at an existing prototype of a TW-accelerating-structure-based beam injector constructed at the Huazhong University of Science and Technology.In addition,further considerations and discussion for extending the applications of the proposed method have been given.This breakdown-locating approach involving the transient response in the framework of TL theory can be a conceivable supple-ment to existing methods,facilitating solution to construction problems at an affordable cost.
基金the National Key R&D Program of China(2017YFC1501501)the CAS Project of Stable Support for Youth Team in Basic Research Field(YSRR-018)+3 种基金the Youth Innovation Fund project of the university(WK2080000172)the National Natural Science Foundation of China(41875006,U1938115)the Chinese Meridian Projectthe International Partnership Program of Chinese Academy of Sciences(183311KYSB20200003).
文摘A low-frequency magnetic lightning mapping system(LFM-LMS)was built during the SHAndong Triggered Lightning Experiment(SHATLE),based on continuous measurements of magnetic field radiation from lightning.The hardware and source-mapping techniques used by the LFM-LMS were introduced;both Monte Carlo simulations and the observation of rocket-triggered lightning examples were employed to examine the location accuracy and detection effectiveness of the LFM-LMS.We estimated that the system’s location accuracy about 100−200 m horizontally and~200 m vertically.A natural intra-cloud lightning flash and a rocket-triggered lightning flash,both with intricate structures and discharging processes,were examined using the three-dimensional mapping results.The progressing path of negative lightning leaders is usually well-defined,and its propagation speed is estimated to be(0.5−1.4)×10^(6)m/s.In summary,the LFM-LMS can reconstruct the three-dimensional morphology of lightning flashes;this technology provides a efficient method for investigating the characteristics of lightning development,as well as the overall electrical strucuture of thunderstorms.
基金This work was partly supported by the National Natural Science Foundation of China(52177074).
文摘Aiming at the problem that most of the cables in the power collection systemof offshore wind farms are buried deep in the seabed,whichmakes it difficult to detect faults,this paper proposes a two-step fault location method based on compressed sensing and ranging equation.The first step is to determine the fault zone through compressed sensing,and improve the datameasurement,dictionary design and algorithmreconstruction:Firstly,the phase-locked loop trigonometric functionmethod is used to suppress the spike phenomenon when extracting the fault voltage,so that the extracted voltage valuewillnot have a large error due to the voltage fluctuation.Secondly,theλ-NIM dictionary is designed by using the node impedancematrix and the fault location coefficient to further reduce the influence of pseudo-fault points.Finally,the CoSaMP algorithmis improved with the generalized Jaccard coefficient to improve the reconstruction accuracy.The second step is to use the ranging equation to accurately locate the asymmetric fault of the wind farm collection system on the basis of determining the fault interval.The simulation results show that the proposedmethod ismore accurate than the compressedsensingmethod andimpedancemethod in fault section location and fault location accuracy,the relative error is reduced from 0.75%to 0.4%,and has a certain anti-noise ability.