Damage caused by people and organizations unconnected with the pipeline management is a major risk faced by pipelines,and its consequences can have a huge impact.However,the present measures to monitor this have major...Damage caused by people and organizations unconnected with the pipeline management is a major risk faced by pipelines,and its consequences can have a huge impact.However,the present measures to monitor this have major problems such as time delays,overlooking threats,and false alarms.To overcome the disadvantages of these methods,analysis of big location data from mobile phone systems was applied to prevent third-party damage to pipelines,and a third-party damage prevention system was developed for pipelines including encryption mobile phone data,data preprocessing,and extraction of characteristic patterns.By applying this to natural gas pipelines,a large amount of location data was collected for data feature recognition and model analysis.Third-party illegal construction and occupation activities were discovered in a timely manner.This is important for preventing third-party damage to pipelines.展开更多
Half centuries of follow-up survey has enabled the architects and urban planners to design rationally by the aid of planning Nonetheless, limitation has occurred at planning because city has been changing its utility ...Half centuries of follow-up survey has enabled the architects and urban planners to design rationally by the aid of planning Nonetheless, limitation has occurred at planning because city has been changing its utility in accordance with its users' demand. In this paper, the authors proposed a method to analyze trait of users in market areas near stations by analyzing location based social network. After the datum collection from geotagged tweets, these GPS (global positioning system) datum were plotted to map attained from yahoo open location platform. Then the morphological analysis and terminology extraction system extracted the keywords and their scores. After calculating the distance from stations and users' GPS coordination, the authors extracted the array of keywords and corresponding scores in some station market area. Lastly, ratios of all users' scores and city's scores were calculated to examine the locality. Full combination of data collection, natural language processing and visualization enabled the authors to envisage distribution of collective background in city.展开更多
Three-parameter Weibull distribution is one of the preferable distribution models to describe product life. However, it is difficult to estimate its location parameter in the situation of a small size of sample. This ...Three-parameter Weibull distribution is one of the preferable distribution models to describe product life. However, it is difficult to estimate its location parameter in the situation of a small size of sample. This paper presents a stochastic simulation method to estimate the Weibull location parameters according to a small size of sample of product life observations and a large amount of statistically simulated life date. Big data technique is applied to find the relationship between the minimal observation in a product life sample of size <em>n</em> (<em>n</em> ≥ 3) and the Weibull location parameter. An example is presented to demonstrate the applicability and the value of the big data based stochastic simulation method. Comparing with other methods, the stochastic simulation method can be applied to very small size of sample such as the sample size of three, and it is easy to apply.展开更多
China has mobile phone penetration rate of over 96.2%.Mobile phone has become the largest Internet terminal for Chinese Internet users.Population geographic distribution in earthquake zones can be got based on mobile ...China has mobile phone penetration rate of over 96.2%.Mobile phone has become the largest Internet terminal for Chinese Internet users.Population geographic distribution in earthquake zones can be got based on mobile phone positioning and map matching.For reducing earthquake black-box stage,we propose a real-time collection,correction and schedule algorithm of population position data by four stream processing environments(Redis,Hbase,Kafka,and Spark Streaming)in this paper.For labeling precisely population geographic distribution on the network map,matching of population geographic coordinates and map coordinates are optimized by sample comparison based on location data of mobile communication base stations and prefecture level cities.The test result shows the proposed system is high efficient and can rapidly respond to any emerging parallel tasks during the earthquake.A high-precision heat map of affected population can be produced and published on-line within 2 min after the devastating earthquake happened.展开更多
Mobile big data collected by mobile network operators is of interest to many research communities and industries for its remarkable values.However,such spatiotemporal information may lead to a harsh threat to subscrib...Mobile big data collected by mobile network operators is of interest to many research communities and industries for its remarkable values.However,such spatiotemporal information may lead to a harsh threat to subscribers’privacy.This work focuses on subscriber privacy vulnerability assessment in terms of user identifiability across two datasets with significant detail reduced mobility representation.In this paper,we propose an innovative semantic spatiotemporal representation for each subscriber based on the geographic information,termed as daily habitat region,to approximate the subscriber’s daily mobility coverage with far lesser information compared with original mobility traces.The daily habitat region is realized via convex hull extraction on the user’s daily spatiotemporal traces.As a result,user identification can be formulated to match two records with the maximum similarity score between two convex hull sets,obtained by our proposed similarity measures based on cosine distance and permutation hypothesis test.Experiments are conducted to evaluate our proposed innovative mobility representation and user identification algorithms,which also demonstrate that the subscriber’s mobile privacy is under a severe threat even with significantly reduced spatiotemporal information.展开更多
The city is facing the unprecedented pressure with the rapid development and the moving population. Some hidden knowledge can be found to service the social with human trajectory data. In this paper, we define a state...The city is facing the unprecedented pressure with the rapid development and the moving population. Some hidden knowledge can be found to service the social with human trajectory data. In this paper, we define a state-ofthe-art concept on fluctuant locations with PCA method and discover the same attribute of fluctuant locations called event with topic model. In the time slice, locations with the same attribute are called event region. Event regions aim to understand the relationship between spatial-temporal locations in the city and to early-warning analyze for the city planning, construction, intelligent navigation, route planning and location based service. We use GeoLife public data to experiment and verify this paper.展开更多
已有的轨迹预测算法针对移动对象运动模式,使用数学模型进行交通流模拟,难以对路网中的移动对象进行准确的描述.为了解决这一问题,提出基于隐马尔可夫模型(hidden Markov model,简称HMM)的自适应轨迹预测模型SATP(self-adaptive traject...已有的轨迹预测算法针对移动对象运动模式,使用数学模型进行交通流模拟,难以对路网中的移动对象进行准确的描述.为了解决这一问题,提出基于隐马尔可夫模型(hidden Markov model,简称HMM)的自适应轨迹预测模型SATP(self-adaptive trajectory prediction model based on HMM),对大数据环境下移动对象海量轨迹利用基于密度的聚类方法进行位置密度分区和高效分段处理,减少HMM的状态数量.根据输入轨迹自动选取参数组合,避免HMM模型中隐状态不连续、状态停留等问题.实验结果表明,SATP模型在实验中表现出较高的预测准确性,并维持较低的时间开销.针对速度随机改变的移动对象,其平均预测准确率为84.1%;相同情况下,平均高出朴素预测算法46.7%.展开更多
基金supported by Pipeline Management Data Analysis and Typical Model Research [Grant Number 2016B-3105-0501]CNPC (China National Petroleum Corporation) project, Research on Oil and Gas Pipeline Safety and Reliability Operating [Grant Number 2015-B025-0628]
文摘Damage caused by people and organizations unconnected with the pipeline management is a major risk faced by pipelines,and its consequences can have a huge impact.However,the present measures to monitor this have major problems such as time delays,overlooking threats,and false alarms.To overcome the disadvantages of these methods,analysis of big location data from mobile phone systems was applied to prevent third-party damage to pipelines,and a third-party damage prevention system was developed for pipelines including encryption mobile phone data,data preprocessing,and extraction of characteristic patterns.By applying this to natural gas pipelines,a large amount of location data was collected for data feature recognition and model analysis.Third-party illegal construction and occupation activities were discovered in a timely manner.This is important for preventing third-party damage to pipelines.
文摘Half centuries of follow-up survey has enabled the architects and urban planners to design rationally by the aid of planning Nonetheless, limitation has occurred at planning because city has been changing its utility in accordance with its users' demand. In this paper, the authors proposed a method to analyze trait of users in market areas near stations by analyzing location based social network. After the datum collection from geotagged tweets, these GPS (global positioning system) datum were plotted to map attained from yahoo open location platform. Then the morphological analysis and terminology extraction system extracted the keywords and their scores. After calculating the distance from stations and users' GPS coordination, the authors extracted the array of keywords and corresponding scores in some station market area. Lastly, ratios of all users' scores and city's scores were calculated to examine the locality. Full combination of data collection, natural language processing and visualization enabled the authors to envisage distribution of collective background in city.
文摘Three-parameter Weibull distribution is one of the preferable distribution models to describe product life. However, it is difficult to estimate its location parameter in the situation of a small size of sample. This paper presents a stochastic simulation method to estimate the Weibull location parameters according to a small size of sample of product life observations and a large amount of statistically simulated life date. Big data technique is applied to find the relationship between the minimal observation in a product life sample of size <em>n</em> (<em>n</em> ≥ 3) and the Weibull location parameter. An example is presented to demonstrate the applicability and the value of the big data based stochastic simulation method. Comparing with other methods, the stochastic simulation method can be applied to very small size of sample such as the sample size of three, and it is easy to apply.
基金supported by the Special Fund of Information Operational Projects from China Earthquake Administration(K1809-4)
文摘China has mobile phone penetration rate of over 96.2%.Mobile phone has become the largest Internet terminal for Chinese Internet users.Population geographic distribution in earthquake zones can be got based on mobile phone positioning and map matching.For reducing earthquake black-box stage,we propose a real-time collection,correction and schedule algorithm of population position data by four stream processing environments(Redis,Hbase,Kafka,and Spark Streaming)in this paper.For labeling precisely population geographic distribution on the network map,matching of population geographic coordinates and map coordinates are optimized by sample comparison based on location data of mobile communication base stations and prefecture level cities.The test result shows the proposed system is high efficient and can rapidly respond to any emerging parallel tasks during the earthquake.A high-precision heat map of affected population can be produced and published on-line within 2 min after the devastating earthquake happened.
基金This work was in part supported by the National Natural Science Foundation of China(Nos.61622101 and 61571020)in part by the Natural Science Foundation(Nos.DMS-1521746 and DMS-1737795.
文摘Mobile big data collected by mobile network operators is of interest to many research communities and industries for its remarkable values.However,such spatiotemporal information may lead to a harsh threat to subscribers’privacy.This work focuses on subscriber privacy vulnerability assessment in terms of user identifiability across two datasets with significant detail reduced mobility representation.In this paper,we propose an innovative semantic spatiotemporal representation for each subscriber based on the geographic information,termed as daily habitat region,to approximate the subscriber’s daily mobility coverage with far lesser information compared with original mobility traces.The daily habitat region is realized via convex hull extraction on the user’s daily spatiotemporal traces.As a result,user identification can be formulated to match two records with the maximum similarity score between two convex hull sets,obtained by our proposed similarity measures based on cosine distance and permutation hypothesis test.Experiments are conducted to evaluate our proposed innovative mobility representation and user identification algorithms,which also demonstrate that the subscriber’s mobile privacy is under a severe threat even with significantly reduced spatiotemporal information.
文摘The city is facing the unprecedented pressure with the rapid development and the moving population. Some hidden knowledge can be found to service the social with human trajectory data. In this paper, we define a state-ofthe-art concept on fluctuant locations with PCA method and discover the same attribute of fluctuant locations called event with topic model. In the time slice, locations with the same attribute are called event region. Event regions aim to understand the relationship between spatial-temporal locations in the city and to early-warning analyze for the city planning, construction, intelligent navigation, route planning and location based service. We use GeoLife public data to experiment and verify this paper.
文摘已有的轨迹预测算法针对移动对象运动模式,使用数学模型进行交通流模拟,难以对路网中的移动对象进行准确的描述.为了解决这一问题,提出基于隐马尔可夫模型(hidden Markov model,简称HMM)的自适应轨迹预测模型SATP(self-adaptive trajectory prediction model based on HMM),对大数据环境下移动对象海量轨迹利用基于密度的聚类方法进行位置密度分区和高效分段处理,减少HMM的状态数量.根据输入轨迹自动选取参数组合,避免HMM模型中隐状态不连续、状态停留等问题.实验结果表明,SATP模型在实验中表现出较高的预测准确性,并维持较低的时间开销.针对速度随机改变的移动对象,其平均预测准确率为84.1%;相同情况下,平均高出朴素预测算法46.7%.