Internet takes a role as a place for communication between people beyond a space simply for the acquisition of information.Recently,social network service(SNS)reflecting human’s basic desire for talking and communica...Internet takes a role as a place for communication between people beyond a space simply for the acquisition of information.Recently,social network service(SNS)reflecting human’s basic desire for talking and communicating with others is focused on around the world.And location-based service(LBS)is a service that provides various life conveniences like improving productivity through location information,such as GPS and WiFi.This paper suggests an application combining LBS and SNS based on Android OS.By using smart phone which is personal mobile information equipment,it combines location information with user information and SNS so that the service can be developed.It also maximizes sharing and use of information via twit based on locations of friends.This proposed system is aims for users to show online identity more actively and more conveniently.展开更多
Social Networking is a harbinger to a more recent era in the area of computing where allocated and central resources are used in an exclusive manner. Millions of people around the globe with access to the internet are...Social Networking is a harbinger to a more recent era in the area of computing where allocated and central resources are used in an exclusive manner. Millions of people around the globe with access to the internet are part of one or more social networks. They have permanent online accounts on Facebook and Twitter etc. where they create profiles, share photos, videos, useful links, their thoughts and spend hours catching up with what their friends are doing in their lives. The problem arise when somebody needs specific information about any city inside a country e.g. Where he/she can live? What he/she can eat? Where is the best place for outing? What are the special events relevant to that region? And may be any other help? In this paper we suggest a social network called Google map based social network (GMBSN), where users can choose their desired city of interest from the list. The selected city will be highlighted on Google map. After choosing any city from the map, the user will be able to select any category from the list and start finding and sharing information about the desired city of any country.展开更多
The wide spread of location-based social networks brings about a huge volume of user check-in data, whichfacilitates the recommendation of points of interest (POIs). Recent advances on distributed representation she...The wide spread of location-based social networks brings about a huge volume of user check-in data, whichfacilitates the recommendation of points of interest (POIs). Recent advances on distributed representation shed light onlearning low dimensional dense vectors to alleviate the data sparsity problem. Current studies on representation learningfor POI recommendation embed both users and POIs in a common latent space, and users' preference is inferred basedon the distance/similarity between a user and a POI. Such an approach is not in accordance with the semantics of usersand POIs as they are inherently different objects. In this paper, we present a novel translation-based, time and locationaware (TransTL) representation, which models the spatial and temporal information as a relationship connecting users andPOIs. Our model generalizes the recent advances in knowledge graph embedding. The basic idea is that the embedding ofa 〈time, location〉 pair corresponds to a translation from embeddings of users to POIs. Since the POI embedding shouldbe close to the user embedding plus the relationship vector, the recommendation can be performed by selecting the top-kPOIs similar to the translated POI, which are all of the same type of objects. We conduct extensive experiments on tworeal-world data.sets. The results demonstrate that our TransTL model achieves the state-of-the-art performance. It is alsomuch more robust to data sparsity than the baselines.展开更多
The rising prosperity of Location-based Social Networks(LBSNs)witnessed an explosion in the availability of geo-tagged social media data,which enables tremendous location-aware online services,especially next point of...The rising prosperity of Location-based Social Networks(LBSNs)witnessed an explosion in the availability of geo-tagged social media data,which enables tremendous location-aware online services,especially next point of interest(POI)recommendation.However,previous next POI recommendation studies usually adopt fix-length time windows for user check-in sequence modeling,leading to a limited capacity in capturing fine-grained user temporal preferences that easily change over time.Besides,existing methods often directly leverage multi-modal contexts as auxiliary to alleviate the data sparsity issue,which fails to fully exploit the sequential patterns of contextual information for inferring user interest drift.To address the above challenges,we propose a novel framework named iTourSPOT which extends traditional collaborative filtering methods with a context-aware POI embedding architecture.For enhancing temporal interests modeling capacity,we associate the context feature extraction with varying-length sessions and incorporate check-in frequencies of POIs as prior knowledge to instruct the session representation learning of our model.Moreover,a collaborative sequence transduction model is designed for joint context sequence modeling and session-based POI recommendation.Experimental results on a real-world geo-tagged photo dataset clearly demonstrate the effectiveness of the proposed framework when compared with state-of-the-art baseline methods,especially in both sparse and cold-start scenarios.展开更多
近年来,异质网络中的社区发现逐渐成为人们关注的研究热点,然而现有大多数非重叠或重叠的社区发现方法都局限于考虑单一类型的网络结构,而无法适用于包含多模实体及其多维关系的异质网络,基于位置的社交网络(location based social netw...近年来,异质网络中的社区发现逐渐成为人们关注的研究热点,然而现有大多数非重叠或重叠的社区发现方法都局限于考虑单一类型的网络结构,而无法适用于包含多模实体及其多维关系的异质网络,基于位置的社交网络(location based social network,LBSN)作为最近兴起的一种新型异质网络,如何有效发现其含有多维关系的复杂社区结构对现有研究来说是一个挑战性的难题.为此,提出了一种融合用户与位置实体及其多维关系的社区发现方法MRNMF(multi-relational nonnegative matrix factorization),该方法通过建立基于非负矩阵分解的联合聚类目标函数,并考虑融入用户社交关系、用户位置签到关系以及兴趣点特征等多维度的影响因素,能同时获得紧密关联的用户模糊社区与兴趣点聚簇结构,以有效缓解推荐中的数据稀疏问题.在2种真实LBSN数据集上的实验结果表明,所提出的MRNMF方法同时在兴趣点与朋友这双重推荐上比其他传统方法具有更优越的推荐性能.展开更多
Point-of-interest(POI)recommendations in location-based social networks(LBSNs)have developed rapidly by incorporating feature information and deep learning methods.However,most studies have failed to accurately reflec...Point-of-interest(POI)recommendations in location-based social networks(LBSNs)have developed rapidly by incorporating feature information and deep learning methods.However,most studies have failed to accurately reflect different users’preferences,in particular,the short-term preferences of inactive users.To better learn user preferences,in this study,we propose a long-short-term-preference-based adaptive successive POI recommendation(LSTP-ASR)method by combining trajectory sequence processing,long short-term preference learning,and spatiotemporal context.First,the check-in trajectory sequences are adaptively divided into recent and historical sequences according to a dynamic time window.Subsequently,an adaptive filling strategy is used to expand the recent check-in sequences of users with inactive check-in behavior using those of similar active users.We further propose an adaptive learning model to accurately extract long short-term preferences of users to establish an efficient successive POI recommendation system.A spatiotemporal-context-based recurrent neural network and temporal-context-based long short-term memory network are used to model the users’recent and historical checkin trajectory sequences,respectively.Extensive experiments on the Foursquare and Gowalla datasets reveal that the proposed method outperforms several other baseline methods in terms of three evaluation metrics.More specifically,LSTP-ASR outperforms the previously best baseline method(RTPM)with a 17.15%and 20.62%average improvement on the Foursquare and Gowalla datasets in terms of the Fβmetric,respectively.展开更多
Location-based social network (LBSN) is at the forefront of emerging trends in social network services (SNS) since the users in LBSN are allowed to "check-in" the places (locations) when they visit them. The a...Location-based social network (LBSN) is at the forefront of emerging trends in social network services (SNS) since the users in LBSN are allowed to "check-in" the places (locations) when they visit them. The accurate geographi- cal and temporal information of these check-in actions are provided by the end-user GPS-enabled mobile devices, and recorded by the LBSN system. In this paper, we analyze and mine a big LBSN data, Gowalla, collected by us. First, we investigate the relationship between the spatio-temporal co- occurrences and social ties, and the results show that the co- occurrences are strongly correlative with the social ties. Sec- ond, we present a study of predicting two users whether or not they will meet (co-occur) at a place in a given future time, by exploring their check-in habits. In particular, we first intro- duce two new concepts, bag-of-location and bag-of-time-lag, to characterize user's check-in habits. Based on such bag rep- resentations, we define a similarity metric called habits sim- ilarity to measure the similarity between two users' check-in habits. Then we propose a machine !earning formula for pre- dicting co-occurrence based on the social ties and habits sim- ilarities. Finally, we conduct extensive experiments on our dataset, and the results demonstrate the effectiveness of the proposed method.展开更多
Recently, as location-based social network(LBSN) rapidly grow, point-of-interest(POI) recommendation has become an important way to help people locate interesting places. Nowadays, there have been deep studies conduct...Recently, as location-based social network(LBSN) rapidly grow, point-of-interest(POI) recommendation has become an important way to help people locate interesting places. Nowadays, there have been deep studies conducted on the geographical and social influence in the point-of-interest recommendation model based on the rating prediction. The fact is, however, relying solely on the rating fails to reflect the user's preferences very accurately, because the users are most concerned with the list of ranked point-of-interests(POIs) on the actual output of recommender systems. In this paper, we propose a co-pairwise ranking model called Geo-Social Bayesian Personalized Ranking model(GSBPR), which is based on the pairwise ranking with the exploiting geo-social correlations by incorporating the method of ranking learning into the process of POI recommendation. In this model, we develop a novel BPR pairwise ranking assumption by injecting users' geo-social preference. Based on this assumption, the POI recommendation model is reformulated by a three-level joint pairwise ranking model. And the experimental results based on real datasets show that the proposed method in this paper enjoys better recommendation performance compared to other state-of-the-art POI recommendation models.展开更多
随着基于位置社交网络(location-based social network,LBSN)的发展,兴趣点推荐成为满足用户个性化需求、减轻信息过载问题的重要手段.然而,已有的兴趣点推荐算法存在如下的问题:1)多数已有的兴趣点推荐算法简化用户签到频率数据,仅使...随着基于位置社交网络(location-based social network,LBSN)的发展,兴趣点推荐成为满足用户个性化需求、减轻信息过载问题的重要手段.然而,已有的兴趣点推荐算法存在如下的问题:1)多数已有的兴趣点推荐算法简化用户签到频率数据,仅使用二进制值来表示用户是否访问一个兴趣点;2)基于矩阵分解的兴趣点推荐算法把签到频率数据和传统推荐系统中的评分数据等同看待,使用高斯分布模型建模用户的签到行为;3)忽视用户签到数据的隐式反馈属性.为解决以上问题,提出一个基于Ranking的泊松矩阵分解兴趣点推荐算法.首先,根据LBSN中用户的签到行为特点,利用泊松分布模型替代高斯分布模型建模用户在兴趣点上签到行为;然后采用BPR(Bayesian personalized ranking)标准优化泊松矩阵分解的损失函数,拟合用户在兴趣点对上的偏序关系;最后,利用包含地域影响力的正则化因子约束泊松矩阵分解的过程.在真实数据集上的实验结果表明:基于Ranking的泊松矩阵分解兴趣点推荐算法的性能优于传统的兴趣点推荐算法.展开更多
兴趣点推荐是在基于位置社会网络(location-based social network,LBSN)中流行起来的一种全新形式的推荐.利用LBSN所包含的丰富信息进行个性化推荐能有效增强用户体验和提高用户对LBSN的依赖度.针对无显示用户偏好、兴趣非一致性和数据...兴趣点推荐是在基于位置社会网络(location-based social network,LBSN)中流行起来的一种全新形式的推荐.利用LBSN所包含的丰富信息进行个性化推荐能有效增强用户体验和提高用户对LBSN的依赖度.针对无显示用户偏好、兴趣非一致性和数据稀疏性等挑战性问题,研究一种针对LBSN的双重细粒度POI推荐策略,即一方面将用户的全部历史签到信息以小时为单位细分为24个时间段,另一方面将每个POI细分为多个潜在主题及其分布,同时利用用户的历史签到信息和评论信息挖掘出用户在不同时间段的主题偏好,以实现POI的Top-N推荐.为实现该推荐思路,首先,根据用户的评论信息,运用LDA模型提取出每个POI的主题分布;然后,对于每个用户,将其签到信息划分到24个时间段中,通过连接相应的POI主题分布映射出用户在不同时间段对每个主题的兴趣偏好.为解决数据稀疏问题,运用高阶奇异值分解算法对用户-主题-时间三阶张量进行分解,获取用户在每个时间段对每个主题更为准确的兴趣评分.在真实数据集上进行了性能测试,结果表明所提出的推荐策略具有较好的推荐效果.展开更多
兴趣点(Point-Of-Interest,POI)推荐是基于位置社交网络(Location-Based Social Network,LBSN)中一项重要的个性化服务,可以帮助用户发现其感兴趣的POI,提高信息服务质量。针对POI推荐中存在的数据稀疏性问题,提出一种融合社交关系和局...兴趣点(Point-Of-Interest,POI)推荐是基于位置社交网络(Location-Based Social Network,LBSN)中一项重要的个性化服务,可以帮助用户发现其感兴趣的POI,提高信息服务质量。针对POI推荐中存在的数据稀疏性问题,提出一种融合社交关系和局部地理因素的POI推荐算法。根据社交关系中用户间的共同签到和距离关系度量用户相似性,并基于用户的协同过滤方法构建社交影响模型。为每个用户划分一个局部活动区域,通过对区域内POIs间的签到相关性分析,建立局部地理因素影响模型。基于加权矩阵分解挖掘用户自身偏好,并融合社交关系和局部地理因素进行POI推荐。实验表明,所提出的POI推荐算法相比其他方法具有更高的准确率和召回率,能够有效缓解数据稀疏性问题,提高推荐质量。展开更多
基金MKE(the Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2011-C1090-1121-0010)
文摘Internet takes a role as a place for communication between people beyond a space simply for the acquisition of information.Recently,social network service(SNS)reflecting human’s basic desire for talking and communicating with others is focused on around the world.And location-based service(LBS)is a service that provides various life conveniences like improving productivity through location information,such as GPS and WiFi.This paper suggests an application combining LBS and SNS based on Android OS.By using smart phone which is personal mobile information equipment,it combines location information with user information and SNS so that the service can be developed.It also maximizes sharing and use of information via twit based on locations of friends.This proposed system is aims for users to show online identity more actively and more conveniently.
文摘Social Networking is a harbinger to a more recent era in the area of computing where allocated and central resources are used in an exclusive manner. Millions of people around the globe with access to the internet are part of one or more social networks. They have permanent online accounts on Facebook and Twitter etc. where they create profiles, share photos, videos, useful links, their thoughts and spend hours catching up with what their friends are doing in their lives. The problem arise when somebody needs specific information about any city inside a country e.g. Where he/she can live? What he/she can eat? Where is the best place for outing? What are the special events relevant to that region? And may be any other help? In this paper we suggest a social network called Google map based social network (GMBSN), where users can choose their desired city of interest from the list. The selected city will be highlighted on Google map. After choosing any city from the map, the user will be able to select any category from the list and start finding and sharing information about the desired city of any country.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 61572376 and 91646206, and the National Key Research and Development Program of China under Grant No. 2016YFB1000603.
文摘The wide spread of location-based social networks brings about a huge volume of user check-in data, whichfacilitates the recommendation of points of interest (POIs). Recent advances on distributed representation shed light onlearning low dimensional dense vectors to alleviate the data sparsity problem. Current studies on representation learningfor POI recommendation embed both users and POIs in a common latent space, and users' preference is inferred basedon the distance/similarity between a user and a POI. Such an approach is not in accordance with the semantics of usersand POIs as they are inherently different objects. In this paper, we present a novel translation-based, time and locationaware (TransTL) representation, which models the spatial and temporal information as a relationship connecting users andPOIs. Our model generalizes the recent advances in knowledge graph embedding. The basic idea is that the embedding ofa 〈time, location〉 pair corresponds to a translation from embeddings of users to POIs. Since the POI embedding shouldbe close to the user embedding plus the relationship vector, the recommendation can be performed by selecting the top-kPOIs similar to the translated POI, which are all of the same type of objects. We conduct extensive experiments on tworeal-world data.sets. The results demonstrate that our TransTL model achieves the state-of-the-art performance. It is alsomuch more robust to data sparsity than the baselines.
基金supported by grants from the National Natural Science Foundation of China[grant numbers 41830645,41971331].
文摘The rising prosperity of Location-based Social Networks(LBSNs)witnessed an explosion in the availability of geo-tagged social media data,which enables tremendous location-aware online services,especially next point of interest(POI)recommendation.However,previous next POI recommendation studies usually adopt fix-length time windows for user check-in sequence modeling,leading to a limited capacity in capturing fine-grained user temporal preferences that easily change over time.Besides,existing methods often directly leverage multi-modal contexts as auxiliary to alleviate the data sparsity issue,which fails to fully exploit the sequential patterns of contextual information for inferring user interest drift.To address the above challenges,we propose a novel framework named iTourSPOT which extends traditional collaborative filtering methods with a context-aware POI embedding architecture.For enhancing temporal interests modeling capacity,we associate the context feature extraction with varying-length sessions and incorporate check-in frequencies of POIs as prior knowledge to instruct the session representation learning of our model.Moreover,a collaborative sequence transduction model is designed for joint context sequence modeling and session-based POI recommendation.Experimental results on a real-world geo-tagged photo dataset clearly demonstrate the effectiveness of the proposed framework when compared with state-of-the-art baseline methods,especially in both sparse and cold-start scenarios.
文摘近年来,异质网络中的社区发现逐渐成为人们关注的研究热点,然而现有大多数非重叠或重叠的社区发现方法都局限于考虑单一类型的网络结构,而无法适用于包含多模实体及其多维关系的异质网络,基于位置的社交网络(location based social network,LBSN)作为最近兴起的一种新型异质网络,如何有效发现其含有多维关系的复杂社区结构对现有研究来说是一个挑战性的难题.为此,提出了一种融合用户与位置实体及其多维关系的社区发现方法MRNMF(multi-relational nonnegative matrix factorization),该方法通过建立基于非负矩阵分解的联合聚类目标函数,并考虑融入用户社交关系、用户位置签到关系以及兴趣点特征等多维度的影响因素,能同时获得紧密关联的用户模糊社区与兴趣点聚簇结构,以有效缓解推荐中的数据稀疏问题.在2种真实LBSN数据集上的实验结果表明,所提出的MRNMF方法同时在兴趣点与朋友这双重推荐上比其他传统方法具有更优越的推荐性能.
基金the National Natural Science Foundation of China(Grant Nos.62102347,62376041,62172352)Guangdong Ocean University Research Fund Project(Grant No.060302102304).
文摘Point-of-interest(POI)recommendations in location-based social networks(LBSNs)have developed rapidly by incorporating feature information and deep learning methods.However,most studies have failed to accurately reflect different users’preferences,in particular,the short-term preferences of inactive users.To better learn user preferences,in this study,we propose a long-short-term-preference-based adaptive successive POI recommendation(LSTP-ASR)method by combining trajectory sequence processing,long short-term preference learning,and spatiotemporal context.First,the check-in trajectory sequences are adaptively divided into recent and historical sequences according to a dynamic time window.Subsequently,an adaptive filling strategy is used to expand the recent check-in sequences of users with inactive check-in behavior using those of similar active users.We further propose an adaptive learning model to accurately extract long short-term preferences of users to establish an efficient successive POI recommendation system.A spatiotemporal-context-based recurrent neural network and temporal-context-based long short-term memory network are used to model the users’recent and historical checkin trajectory sequences,respectively.Extensive experiments on the Foursquare and Gowalla datasets reveal that the proposed method outperforms several other baseline methods in terms of three evaluation metrics.More specifically,LSTP-ASR outperforms the previously best baseline method(RTPM)with a 17.15%and 20.62%average improvement on the Foursquare and Gowalla datasets in terms of the Fβmetric,respectively.
文摘Location-based social network (LBSN) is at the forefront of emerging trends in social network services (SNS) since the users in LBSN are allowed to "check-in" the places (locations) when they visit them. The accurate geographi- cal and temporal information of these check-in actions are provided by the end-user GPS-enabled mobile devices, and recorded by the LBSN system. In this paper, we analyze and mine a big LBSN data, Gowalla, collected by us. First, we investigate the relationship between the spatio-temporal co- occurrences and social ties, and the results show that the co- occurrences are strongly correlative with the social ties. Sec- ond, we present a study of predicting two users whether or not they will meet (co-occur) at a place in a given future time, by exploring their check-in habits. In particular, we first intro- duce two new concepts, bag-of-location and bag-of-time-lag, to characterize user's check-in habits. Based on such bag rep- resentations, we define a similarity metric called habits sim- ilarity to measure the similarity between two users' check-in habits. Then we propose a machine !earning formula for pre- dicting co-occurrence based on the social ties and habits sim- ilarities. Finally, we conduct extensive experiments on our dataset, and the results demonstrate the effectiveness of the proposed method.
基金supported by National Basic Research Program of China (2012CB719905)National Natural Science Funds of China (41201404)Fundamental Research Funds for the Central Universities of China (2042018gf0008)
文摘Recently, as location-based social network(LBSN) rapidly grow, point-of-interest(POI) recommendation has become an important way to help people locate interesting places. Nowadays, there have been deep studies conducted on the geographical and social influence in the point-of-interest recommendation model based on the rating prediction. The fact is, however, relying solely on the rating fails to reflect the user's preferences very accurately, because the users are most concerned with the list of ranked point-of-interests(POIs) on the actual output of recommender systems. In this paper, we propose a co-pairwise ranking model called Geo-Social Bayesian Personalized Ranking model(GSBPR), which is based on the pairwise ranking with the exploiting geo-social correlations by incorporating the method of ranking learning into the process of POI recommendation. In this model, we develop a novel BPR pairwise ranking assumption by injecting users' geo-social preference. Based on this assumption, the POI recommendation model is reformulated by a three-level joint pairwise ranking model. And the experimental results based on real datasets show that the proposed method in this paper enjoys better recommendation performance compared to other state-of-the-art POI recommendation models.
文摘随着基于位置社交网络(location-based social network,LBSN)的发展,兴趣点推荐成为满足用户个性化需求、减轻信息过载问题的重要手段.然而,已有的兴趣点推荐算法存在如下的问题:1)多数已有的兴趣点推荐算法简化用户签到频率数据,仅使用二进制值来表示用户是否访问一个兴趣点;2)基于矩阵分解的兴趣点推荐算法把签到频率数据和传统推荐系统中的评分数据等同看待,使用高斯分布模型建模用户的签到行为;3)忽视用户签到数据的隐式反馈属性.为解决以上问题,提出一个基于Ranking的泊松矩阵分解兴趣点推荐算法.首先,根据LBSN中用户的签到行为特点,利用泊松分布模型替代高斯分布模型建模用户在兴趣点上签到行为;然后采用BPR(Bayesian personalized ranking)标准优化泊松矩阵分解的损失函数,拟合用户在兴趣点对上的偏序关系;最后,利用包含地域影响力的正则化因子约束泊松矩阵分解的过程.在真实数据集上的实验结果表明:基于Ranking的泊松矩阵分解兴趣点推荐算法的性能优于传统的兴趣点推荐算法.
文摘兴趣点推荐是在基于位置社会网络(location-based social network,LBSN)中流行起来的一种全新形式的推荐.利用LBSN所包含的丰富信息进行个性化推荐能有效增强用户体验和提高用户对LBSN的依赖度.针对无显示用户偏好、兴趣非一致性和数据稀疏性等挑战性问题,研究一种针对LBSN的双重细粒度POI推荐策略,即一方面将用户的全部历史签到信息以小时为单位细分为24个时间段,另一方面将每个POI细分为多个潜在主题及其分布,同时利用用户的历史签到信息和评论信息挖掘出用户在不同时间段的主题偏好,以实现POI的Top-N推荐.为实现该推荐思路,首先,根据用户的评论信息,运用LDA模型提取出每个POI的主题分布;然后,对于每个用户,将其签到信息划分到24个时间段中,通过连接相应的POI主题分布映射出用户在不同时间段对每个主题的兴趣偏好.为解决数据稀疏问题,运用高阶奇异值分解算法对用户-主题-时间三阶张量进行分解,获取用户在每个时间段对每个主题更为准确的兴趣评分.在真实数据集上进行了性能测试,结果表明所提出的推荐策略具有较好的推荐效果.
文摘兴趣点(Point-Of-Interest,POI)推荐是基于位置社交网络(Location-Based Social Network,LBSN)中一项重要的个性化服务,可以帮助用户发现其感兴趣的POI,提高信息服务质量。针对POI推荐中存在的数据稀疏性问题,提出一种融合社交关系和局部地理因素的POI推荐算法。根据社交关系中用户间的共同签到和距离关系度量用户相似性,并基于用户的协同过滤方法构建社交影响模型。为每个用户划分一个局部活动区域,通过对区域内POIs间的签到相关性分析,建立局部地理因素影响模型。基于加权矩阵分解挖掘用户自身偏好,并融合社交关系和局部地理因素进行POI推荐。实验表明,所提出的POI推荐算法相比其他方法具有更高的准确率和召回率,能够有效缓解数据稀疏性问题,提高推荐质量。