Contact nonlinear theory was researched. Contact problem was transformed into optimization problem containing Lagrange multiplier, and unsymmetrical stiffness matrix was transformed into symmetrical stiffness matrix. ...Contact nonlinear theory was researched. Contact problem was transformed into optimization problem containing Lagrange multiplier, and unsymmetrical stiffness matrix was transformed into symmetrical stiffness matrix. A finite element analysis (FEA) model defining more than 300 contact pairs for long nut-short screw locking mechanism of a large-scale vertical gear-rack typed ship-lift was built. Using augmented Lagrange method and symmetry algorithm of contact element stiffness, the FEA model was analyzed, and the contact stress of contact interfaces and the von Mises stress of key parts were obtained. The results show that the design of the locking mechanism meets the requirement of engineering, and this method is effective for solving large stole nonlinear contact pairs.展开更多
This paper proposes a new upper-limb exoskeleton to reduce worker physical strain.The proposed design is based on a novel PRRRP(P-Prismatic;R-Revolute)kinematic chain with 5 passive Degrees of Freedom(DoF).Utilizing a...This paper proposes a new upper-limb exoskeleton to reduce worker physical strain.The proposed design is based on a novel PRRRP(P-Prismatic;R-Revolute)kinematic chain with 5 passive Degrees of Freedom(DoF).Utilizing a magnetic spring,the proposed mechanism includes a specially designed locking mechanism that maintains any desired task posture.The proposed exoskeleton incorporates a balancing mechanism to alleviate discomfort and spinal torsional effects also helping in limb weight relief.This paper reports specific models and simulations to demonstrate the feasibility and effectiveness of the proposed design.An experimental characterization is performed to validate the performance of the mechanism in terms of forces and physical strain during a specific application consisting of ceiling-surface drilling tasks.The obtained results preliminarily validate the engineering feasibility and effectiveness of the proposed exoskeleton in the intended operation task thereby requiring the user to exert significantly less force than when not wearing it.展开更多
The deployable telescopic boom,whose mass and stiffness play crucial roles,is extensively used in the design of space-deployable structures.However,the most existing optimal design that neglects the influence of the l...The deployable telescopic boom,whose mass and stiffness play crucial roles,is extensively used in the design of space-deployable structures.However,the most existing optimal design that neglects the influence of the locking mechanisms in boom joints cannot raise the whole stiffness while reducing the boom mass.To tackle this challenge,a novel optimization model,which utilizes the arrangement of the locking mechanisms to achieve synchronous improvement of the stiffness and mass,is proposed.The proposed optimization model incorporates a novel joint stiffness model developed based on an equivalent parallel mechanism that enables the consideration of multiple internal stiffness factors of the locking mechanisms and tubes,resulting in more accurate representations of the joint stiffness behavior.Comparative analysis shows that the proposed stiffness model achieves more than at least 11% improved accuracy compared with existing models.Furthermore,case verification shows that the proposed optimization model can improve stiffness while effectively reducing mass,and it is applied in boom optimization design.展开更多
The main protease (Mpro) of SARS-CoV plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target
基金Supported by the Key Research Project of StatePower Corporation (SPKJ 0l6-06)the Key Scientific ResearchProject of Hubei Province ( 2004AC101D31)
文摘Contact nonlinear theory was researched. Contact problem was transformed into optimization problem containing Lagrange multiplier, and unsymmetrical stiffness matrix was transformed into symmetrical stiffness matrix. A finite element analysis (FEA) model defining more than 300 contact pairs for long nut-short screw locking mechanism of a large-scale vertical gear-rack typed ship-lift was built. Using augmented Lagrange method and symmetry algorithm of contact element stiffness, the FEA model was analyzed, and the contact stress of contact interfaces and the von Mises stress of key parts were obtained. The results show that the design of the locking mechanism meets the requirement of engineering, and this method is effective for solving large stole nonlinear contact pairs.
基金supported by the European Regional Development Fund and the Romanian Government through the Competitiveness Operational Programme 2014-2020project APOLLO,MySMIS code 155988,contract no.9/1.2.1-PTIap.2/23.02.2023.
文摘This paper proposes a new upper-limb exoskeleton to reduce worker physical strain.The proposed design is based on a novel PRRRP(P-Prismatic;R-Revolute)kinematic chain with 5 passive Degrees of Freedom(DoF).Utilizing a magnetic spring,the proposed mechanism includes a specially designed locking mechanism that maintains any desired task posture.The proposed exoskeleton incorporates a balancing mechanism to alleviate discomfort and spinal torsional effects also helping in limb weight relief.This paper reports specific models and simulations to demonstrate the feasibility and effectiveness of the proposed design.An experimental characterization is performed to validate the performance of the mechanism in terms of forces and physical strain during a specific application consisting of ceiling-surface drilling tasks.The obtained results preliminarily validate the engineering feasibility and effectiveness of the proposed exoskeleton in the intended operation task thereby requiring the user to exert significantly less force than when not wearing it.
基金the National Natural Science Foundation of China(Grant Nos.U22B2080 and 51635002).
文摘The deployable telescopic boom,whose mass and stiffness play crucial roles,is extensively used in the design of space-deployable structures.However,the most existing optimal design that neglects the influence of the locking mechanisms in boom joints cannot raise the whole stiffness while reducing the boom mass.To tackle this challenge,a novel optimization model,which utilizes the arrangement of the locking mechanisms to achieve synchronous improvement of the stiffness and mass,is proposed.The proposed optimization model incorporates a novel joint stiffness model developed based on an equivalent parallel mechanism that enables the consideration of multiple internal stiffness factors of the locking mechanisms and tubes,resulting in more accurate representations of the joint stiffness behavior.Comparative analysis shows that the proposed stiffness model achieves more than at least 11% improved accuracy compared with existing models.Furthermore,case verification shows that the proposed optimization model can improve stiffness while effectively reducing mass,and it is applied in boom optimization design.
文摘The main protease (Mpro) of SARS-CoV plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target