High-performance quantum anomalous Hall(QAH)systems are crucial materials for exploring emerging quantum physics and magnetic topological phenomena.Inspired by layered FeSe materials with excellent superconducting pro...High-performance quantum anomalous Hall(QAH)systems are crucial materials for exploring emerging quantum physics and magnetic topological phenomena.Inspired by layered FeSe materials with excellent superconducting properties,the Janus monolayers Fe_(2)SSeX_(2)(X=Ga,In and Tl)are built by the decoration of Ga,In and T1 atoms in monolayer Fe_(2)SSe.In first-principles calculations,Fe_(2)SSeX_(2)have stable structures and prefer ferromagnetic(FM)ordering,and can be considered as Weyl semimetals without spin-orbit coupling.For out-of-plane(OOP)magnetic anisotropy,large nontrivial gaps are opened and the Fe_(2)SSeX_(2)are predicted to be large-gap QAH insulators with a high Chern number C=2,proved by two chiral edge states and Berry curvature.When the magnetization is flipped,the two chiral edge states can be simultaneously changed and C=-2 can be obtained,revealing the fascinating behavior of chiral spin-edge state locking.It is found that the QAH properties of Fe_(2)SSeX_(2)are robust against strain.In particular,nontrivial topological quantum states can spontaneously appear for Fe_(2)SSeGa_(2)and Fe_(2)SSeIn_(2)because the orientations of the easy magnetic axis are adjusted from in-plane to OOP by the biaxial strain.Our studies provide excellent candidate systems to realize QAH properties with a high Chern number,and suggest more experimental explorations combining superconductivity and topology.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52173283 and 62071200)Taishan Scholar Program of Shandong Province(Grant No.ts20190939)Independent Cultivation Program of Innovation Team of Jinan City(Grant No.2021GXRC043)。
文摘High-performance quantum anomalous Hall(QAH)systems are crucial materials for exploring emerging quantum physics and magnetic topological phenomena.Inspired by layered FeSe materials with excellent superconducting properties,the Janus monolayers Fe_(2)SSeX_(2)(X=Ga,In and Tl)are built by the decoration of Ga,In and T1 atoms in monolayer Fe_(2)SSe.In first-principles calculations,Fe_(2)SSeX_(2)have stable structures and prefer ferromagnetic(FM)ordering,and can be considered as Weyl semimetals without spin-orbit coupling.For out-of-plane(OOP)magnetic anisotropy,large nontrivial gaps are opened and the Fe_(2)SSeX_(2)are predicted to be large-gap QAH insulators with a high Chern number C=2,proved by two chiral edge states and Berry curvature.When the magnetization is flipped,the two chiral edge states can be simultaneously changed and C=-2 can be obtained,revealing the fascinating behavior of chiral spin-edge state locking.It is found that the QAH properties of Fe_(2)SSeX_(2)are robust against strain.In particular,nontrivial topological quantum states can spontaneously appear for Fe_(2)SSeGa_(2)and Fe_(2)SSeIn_(2)because the orientations of the easy magnetic axis are adjusted from in-plane to OOP by the biaxial strain.Our studies provide excellent candidate systems to realize QAH properties with a high Chern number,and suggest more experimental explorations combining superconductivity and topology.