In this paper, we discusse the locking phenomenon of the finite element method for the pure displacement boundary value problem in the planar elasticity as Lame constant λ- ∞. The locking-free scheme of Crouziex-Rav...In this paper, we discusse the locking phenomenon of the finite element method for the pure displacement boundary value problem in the planar elasticity as Lame constant λ- ∞. The locking-free scheme of Crouziex-Raviart element was pro- posed and anaIyzed by Brenner et al.[2] and [3]. We firstly present the derivation of Brenner’s scheme, then propose and analyse a locking-free scheme of noncon- forming rectangle finite element.展开更多
本文对一类非线性抛物最优控制问题给出了Crank-Nicolson有限元近似格式。对于状态y和伴随状态变量p采用线性协调有限元离散,对控制变量u采用分片常数近似;得到了控制和状态变量近似的先验误差估计O(h + hu + (∆t)2),为验证算法的有效...本文对一类非线性抛物最优控制问题给出了Crank-Nicolson有限元近似格式。对于状态y和伴随状态变量p采用线性协调有限元离散,对控制变量u采用分片常数近似;得到了控制和状态变量近似的先验误差估计O(h + hu + (∆t)2),为验证算法的有效性给出了数值算例。展开更多
文摘In this paper, we discusse the locking phenomenon of the finite element method for the pure displacement boundary value problem in the planar elasticity as Lame constant λ- ∞. The locking-free scheme of Crouziex-Raviart element was pro- posed and anaIyzed by Brenner et al.[2] and [3]. We firstly present the derivation of Brenner’s scheme, then propose and analyse a locking-free scheme of noncon- forming rectangle finite element.