This paper aims to identify the main driving force for changes of total primary energy consumption in Beijing during the period of 1981-2005.Sectoral energy use was investigated when regional economic structure change...This paper aims to identify the main driving force for changes of total primary energy consumption in Beijing during the period of 1981-2005.Sectoral energy use was investigated when regional economic structure changed significantly.The changes of total primary energy consumption in Beijing are decomposed into production effects,structural effects and intensity effects using the additive version of the logarithmic mean Divisia index (LMDI) method.Aggregate decomposition analysis showed that the major contributor of total effect was made by the production effect fol- lowed by the intensity effect,and the structural effect was rela- tively insignificant.The total and production effects were all posi- tive.In contrast,the structural effect and intensity effect were all negative.Sectoral decomposition investigation indicated that the most effective way to slow down the growth rate of total primary energy consumption (TPEC) was to reduce the production of the energy-intensive industrial sectors and improving industrial en- ergy intensity.The results show that in this period,Beijing's economy has undergone a transformation from an industrial to a service economy.However,the structures of sectoral energy use have not been changed yet,and energy demand should be in- creasing until the energy-intensive industrial production to be reduced and energy intensity of the region reaches a peak.As sequence energy consumption data of sub-sectors are not available, only the fundamental three sectors are considered:agriculture, industry and service.However,further decomposition into secon- dary and tertiary sectors is definitely needed for detailed investi- gations.展开更多
物流业是能源消耗和碳排放的主要产业,碳达峰、碳中和目标的提出将对物流业发展产生深远的影响,因此行业低碳化发展成为亟须解决的问题。运用碳排放系数法测度福建省2012—2021年物流业碳排放总规模,在此基础上利用对数平均迪式指数分解...物流业是能源消耗和碳排放的主要产业,碳达峰、碳中和目标的提出将对物流业发展产生深远的影响,因此行业低碳化发展成为亟须解决的问题。运用碳排放系数法测度福建省2012—2021年物流业碳排放总规模,在此基础上利用对数平均迪式指数分解法(logarithmic mean Divisia index,LMDI)模型分析能源结构、能源效率、产业结构、经济增长和人口因素对福建省物流业运行效率的影响。研究结果显示:经济增长、能源效率和人口因素对福建省物流业碳排放总量增加起促进作用,其中经济增长因素的促进作用最大;能源结构和产业结构因素对福建省物流业碳排放增加起抑制作用。最后,基于实证分析结果,提出推动福建省物流业低碳化发展建议。展开更多
为了给“双碳”目标下我国交通运输行业发展路径及政策制定提供学术参考,基于对数平均迪氏指数法(Logarithmic Mean Divisia Index, LMDI),选取交通运输碳排放系数、运输方式结构、客货运结构和换算周转量4个因素定量分析了2010—2020...为了给“双碳”目标下我国交通运输行业发展路径及政策制定提供学术参考,基于对数平均迪氏指数法(Logarithmic Mean Divisia Index, LMDI),选取交通运输碳排放系数、运输方式结构、客货运结构和换算周转量4个因素定量分析了2010—2020年间我国交通运输行业碳排放变化的主要机理,并结合与美国、日本、德国等已达峰国家相应驱动因素的类比分析,提出我国交通运输行业面向“双碳”目标的路径建议与实现措施。研究结果表明:交通运输碳排放系数、运输方式结构、换算周转量是驱动我国交通运输行业碳排放的关键因素,2010—2020年的贡献率均值分别为24.8%, 27.2%和42.0%,故需要从这3个因素入手,制定针对性的政策来实现交通运输行业“双碳”目标;客货运结构对我国交通运输行业“双碳”目标的影响较弱,2010—2020年的贡献率均值为6.0%,即总周转量中客运和货运占比对我国交通运输行业碳排放的影响不大,但2020年由于新冠疫情的影响,客货运结构对我国交通运输行业碳排放的贡献率升高至43.3%,需要重点关注疫情时期的这一新变化。展开更多
“十四五”时期是中国实现碳达峰的关键时期,也是推动经济高质量发展和生态环境质量持续改善的重要阶段。可拓展的随机性环境影响评估(Stochastic Impacts by Regression on Population,Affluence,and Technology,STIRPAT)模型可以根据...“十四五”时期是中国实现碳达峰的关键时期,也是推动经济高质量发展和生态环境质量持续改善的重要阶段。可拓展的随机性环境影响评估(Stochastic Impacts by Regression on Population,Affluence,and Technology,STIRPAT)模型可以根据研究需要增加自变量,更好地分析相关因素对因变量的影响。以北京市为研究区,通过构建扩展的STIRPAT模型,分析人均地区生产总值(Gross Domestic Product,GDP)、人均汽车保有量、城市化率、第三产业GDP占比、能源消费强度与人均碳排放量的关系,并采用对数平均迪氏指数(Logarithmic Mean Divisia Index,LMDI)分解法分解能源消费强度。结果表明,产业结构和能源消费强度对人均碳排放量均有显著的正向影响。总体来看,要平衡经济发展与碳排放的关系,提高能源利用效率,推广可再生能源,降低能源消耗,减少碳排放。展开更多
文摘This paper aims to identify the main driving force for changes of total primary energy consumption in Beijing during the period of 1981-2005.Sectoral energy use was investigated when regional economic structure changed significantly.The changes of total primary energy consumption in Beijing are decomposed into production effects,structural effects and intensity effects using the additive version of the logarithmic mean Divisia index (LMDI) method.Aggregate decomposition analysis showed that the major contributor of total effect was made by the production effect fol- lowed by the intensity effect,and the structural effect was rela- tively insignificant.The total and production effects were all posi- tive.In contrast,the structural effect and intensity effect were all negative.Sectoral decomposition investigation indicated that the most effective way to slow down the growth rate of total primary energy consumption (TPEC) was to reduce the production of the energy-intensive industrial sectors and improving industrial en- ergy intensity.The results show that in this period,Beijing's economy has undergone a transformation from an industrial to a service economy.However,the structures of sectoral energy use have not been changed yet,and energy demand should be in- creasing until the energy-intensive industrial production to be reduced and energy intensity of the region reaches a peak.As sequence energy consumption data of sub-sectors are not available, only the fundamental three sectors are considered:agriculture, industry and service.However,further decomposition into secon- dary and tertiary sectors is definitely needed for detailed investi- gations.
文摘物流业是能源消耗和碳排放的主要产业,碳达峰、碳中和目标的提出将对物流业发展产生深远的影响,因此行业低碳化发展成为亟须解决的问题。运用碳排放系数法测度福建省2012—2021年物流业碳排放总规模,在此基础上利用对数平均迪式指数分解法(logarithmic mean Divisia index,LMDI)模型分析能源结构、能源效率、产业结构、经济增长和人口因素对福建省物流业运行效率的影响。研究结果显示:经济增长、能源效率和人口因素对福建省物流业碳排放总量增加起促进作用,其中经济增长因素的促进作用最大;能源结构和产业结构因素对福建省物流业碳排放增加起抑制作用。最后,基于实证分析结果,提出推动福建省物流业低碳化发展建议。
文摘“十四五”时期是中国实现碳达峰的关键时期,也是推动经济高质量发展和生态环境质量持续改善的重要阶段。可拓展的随机性环境影响评估(Stochastic Impacts by Regression on Population,Affluence,and Technology,STIRPAT)模型可以根据研究需要增加自变量,更好地分析相关因素对因变量的影响。以北京市为研究区,通过构建扩展的STIRPAT模型,分析人均地区生产总值(Gross Domestic Product,GDP)、人均汽车保有量、城市化率、第三产业GDP占比、能源消费强度与人均碳排放量的关系,并采用对数平均迪氏指数(Logarithmic Mean Divisia Index,LMDI)分解法分解能源消费强度。结果表明,产业结构和能源消费强度对人均碳排放量均有显著的正向影响。总体来看,要平衡经济发展与碳排放的关系,提高能源利用效率,推广可再生能源,降低能源消耗,减少碳排放。