The clustering technique is used to examine each pixel in the image which assigned to one of the clusters depending on the minimum distance to obtain primary classified image into different intensity regions. A waters...The clustering technique is used to examine each pixel in the image which assigned to one of the clusters depending on the minimum distance to obtain primary classified image into different intensity regions. A watershed transformation technique is then employes. This includes: gradient of the classified image, dividing the image into markers, checking the Marker Image to see if it has zero points (watershed lines). The watershed lines are then deleted in the Marker Image created by watershed algorithm. A Region Adjacency Graph (RAG) and Region Adjacency Boundary (RAB) are created between two regions from Marker Image. Finally region merging is done according to region average intensity and two edge strengths (T1, T2). The approach of the authors is tested on remote sensing and brain MR medical images. The final segmentation result is one closed boundary per actual region in the image.展开更多
A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies ...A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model, gray level l , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.展开更多
Based on a nonlocal Laplacian operator,a novel edge detection method of the grayscale image is proposed in this paper.This operator utilizes the information of neighbor pixels for a given pixel to obtain effective and...Based on a nonlocal Laplacian operator,a novel edge detection method of the grayscale image is proposed in this paper.This operator utilizes the information of neighbor pixels for a given pixel to obtain effective and delicate edge detection.The nonlocal edge detection method is used as an initialization for solving the Allen-Cahn equation to achieve two-phase segmentation of the grayscale image.Efficient exponential time differencing(ETD)solvers are employed in the time integration,and finite difference method is adopted in space discretization.The maximum bound principle and energy stability of the proposed numerical schemes are proved.The capability of our segmentation method has been verified in numerical experiments for different types of grayscale images.展开更多
Image segmentation refers to the technique and process of partitioning a digital image into multiple segments based on image characteristics so as to extract the object of interest from it. It is a key step from image...Image segmentation refers to the technique and process of partitioning a digital image into multiple segments based on image characteristics so as to extract the object of interest from it. It is a key step from image processing to image analysis. In the mid-1950s, people began to study image segmentation. For decades, various methods for image segmentation have been proposed. In this paper, traditional image segmentation methods and some new methods appearing in recent years were reviewed. Thresholding segmentation methods, region-based, edge detection-based and segmentation methods based on specific theoretical tools were introduced in detail.展开更多
Based upon the maximum entropy theorem of information theory, a novel fuzzy approach for edge detection is presented. Firstly, a definition of fuzzy partition entropy is proposed after introducing the concepts of fu...Based upon the maximum entropy theorem of information theory, a novel fuzzy approach for edge detection is presented. Firstly, a definition of fuzzy partition entropy is proposed after introducing the concepts of fuzzy probability and fuzzy partition. The relation of the probability partition and the fuzzy c-partition of the image gradient are used in the algorithm. Secondly, based on the conditional probabilities and the fuzzy partition, the optimal thresholding is searched adaptively through the maximum fuzzy entropy principle, and then the edge image is obtained. Lastly, an edge-enhancing procedure is executed on the edge image. The experimental results show that the proposed approach performs well.展开更多
In this paper, a new medical image classification scheme is proposed using selforganizing map (SOM) combined with multiscale technique. It addresses the problem of the handling of edge pixels in the traditional multis...In this paper, a new medical image classification scheme is proposed using selforganizing map (SOM) combined with multiscale technique. It addresses the problem of the handling of edge pixels in the traditional multiscale SOM classifiers. First, to solve the difficulty in manual selection of edge pixels, a multiscale edge detection algorithm based on wavelet transform is proposed. Edge pixels detected are then selected into the training set as a new class and a mu1tiscale SoM classifier is trained using this training set. In this new scheme, the SoM classifier can perform both the classification on the entire image and the edge detection simultaneously. On the other hand, the misclassification of the traditional multiscale SoM classifier in regions near edges is greatly reduced and the correct classification is improved at the same time.展开更多
This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial esti...This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.展开更多
Markov random field(MRF) models for segmentation of noisy images are discussed. According to the maximum a posteriori criterion, a configuration of an image field is regarded as an optimal estimate of the original sce...Markov random field(MRF) models for segmentation of noisy images are discussed. According to the maximum a posteriori criterion, a configuration of an image field is regarded as an optimal estimate of the original scene when its energy is minimized. However, the minimum energy configuration does not correspond to the scene on edges of a given image, which results in errors of segmentation. Improvements of the model are made and a relaxation algorithm based on the improved model is presented using the edge information obtained by a coarse-to-fine procedure. Some examples are presented to illustrate the applicability of the algorithm to segmentation of noisy images.展开更多
Automated segmentation of blood vessels in retinal fundus images is essential for medical image analysis.The segmentation of retinal vessels is assumed to be essential to the progress of the decision support system fo...Automated segmentation of blood vessels in retinal fundus images is essential for medical image analysis.The segmentation of retinal vessels is assumed to be essential to the progress of the decision support system for initial analysis and treatment of retinal disease.This article develops a new Grasshopper Optimization with Fuzzy Edge Detection based Retinal Blood Vessel Segmentation and Classification(GOFED-RBVSC)model.The proposed GOFED-RBVSC model initially employs contrast enhancement process.Besides,GOAFED approach is employed to detect the edges in the retinal fundus images in which the use of GOA adjusts the membership functions.The ORB(Oriented FAST and Rotated BRIEF)feature extractor is exploited to generate feature vectors.Finally,Improved Conditional Variational Auto Encoder(ICAVE)is utilized for retinal image classification,shows the novelty of the work.The performance validation of the GOFEDRBVSC model is tested using benchmark dataset,and the comparative study highlighted the betterment of the GOFED-RBVSC model over the recent approaches.展开更多
The objective assessment of fabric pilling based on light projection and image analysis has been exploited recently.The device for capturing the cross-sectional images of the pilled fabrics with light projection is el...The objective assessment of fabric pilling based on light projection and image analysis has been exploited recently.The device for capturing the cross-sectional images of the pilled fabrics with light projection is elaborated.The detection of the profile line and integration of the sequential cross-sectional pilled image are discussed.The threshold based on Gaussian model is recommended for pill segmentation.The results show that the installed system is capable of eliminating the interference with pill information from the fabric color and pattern.展开更多
文摘The clustering technique is used to examine each pixel in the image which assigned to one of the clusters depending on the minimum distance to obtain primary classified image into different intensity regions. A watershed transformation technique is then employes. This includes: gradient of the classified image, dividing the image into markers, checking the Marker Image to see if it has zero points (watershed lines). The watershed lines are then deleted in the Marker Image created by watershed algorithm. A Region Adjacency Graph (RAG) and Region Adjacency Boundary (RAB) are created between two regions from Marker Image. Finally region merging is done according to region average intensity and two edge strengths (T1, T2). The approach of the authors is tested on remote sensing and brain MR medical images. The final segmentation result is one closed boundary per actual region in the image.
文摘A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model, gray level l , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.
基金supported by the CAS AMSS-PolyU Joint Laboratory of Applied Mathematics.Z.Qiao’s work is partially supported by the Hong Kong Research Grant Council RFS grant RFS2021-5S03GRF grants 15300417,15302919Q.Zhang’s research is supported by the 2019 Hong Kong Scholar Program G-YZ2Y.
文摘Based on a nonlocal Laplacian operator,a novel edge detection method of the grayscale image is proposed in this paper.This operator utilizes the information of neighbor pixels for a given pixel to obtain effective and delicate edge detection.The nonlocal edge detection method is used as an initialization for solving the Allen-Cahn equation to achieve two-phase segmentation of the grayscale image.Efficient exponential time differencing(ETD)solvers are employed in the time integration,and finite difference method is adopted in space discretization.The maximum bound principle and energy stability of the proposed numerical schemes are proved.The capability of our segmentation method has been verified in numerical experiments for different types of grayscale images.
文摘Image segmentation refers to the technique and process of partitioning a digital image into multiple segments based on image characteristics so as to extract the object of interest from it. It is a key step from image processing to image analysis. In the mid-1950s, people began to study image segmentation. For decades, various methods for image segmentation have been proposed. In this paper, traditional image segmentation methods and some new methods appearing in recent years were reviewed. Thresholding segmentation methods, region-based, edge detection-based and segmentation methods based on specific theoretical tools were introduced in detail.
文摘Based upon the maximum entropy theorem of information theory, a novel fuzzy approach for edge detection is presented. Firstly, a definition of fuzzy partition entropy is proposed after introducing the concepts of fuzzy probability and fuzzy partition. The relation of the probability partition and the fuzzy c-partition of the image gradient are used in the algorithm. Secondly, based on the conditional probabilities and the fuzzy partition, the optimal thresholding is searched adaptively through the maximum fuzzy entropy principle, and then the edge image is obtained. Lastly, an edge-enhancing procedure is executed on the edge image. The experimental results show that the proposed approach performs well.
文摘In this paper, a new medical image classification scheme is proposed using selforganizing map (SOM) combined with multiscale technique. It addresses the problem of the handling of edge pixels in the traditional multiscale SOM classifiers. First, to solve the difficulty in manual selection of edge pixels, a multiscale edge detection algorithm based on wavelet transform is proposed. Edge pixels detected are then selected into the training set as a new class and a mu1tiscale SoM classifier is trained using this training set. In this new scheme, the SoM classifier can perform both the classification on the entire image and the edge detection simultaneously. On the other hand, the misclassification of the traditional multiscale SoM classifier in regions near edges is greatly reduced and the correct classification is improved at the same time.
文摘This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.
基金Supported by the National Natural Science Foundation of China
文摘Markov random field(MRF) models for segmentation of noisy images are discussed. According to the maximum a posteriori criterion, a configuration of an image field is regarded as an optimal estimate of the original scene when its energy is minimized. However, the minimum energy configuration does not correspond to the scene on edges of a given image, which results in errors of segmentation. Improvements of the model are made and a relaxation algorithm based on the improved model is presented using the edge information obtained by a coarse-to-fine procedure. Some examples are presented to illustrate the applicability of the algorithm to segmentation of noisy images.
文摘Automated segmentation of blood vessels in retinal fundus images is essential for medical image analysis.The segmentation of retinal vessels is assumed to be essential to the progress of the decision support system for initial analysis and treatment of retinal disease.This article develops a new Grasshopper Optimization with Fuzzy Edge Detection based Retinal Blood Vessel Segmentation and Classification(GOFED-RBVSC)model.The proposed GOFED-RBVSC model initially employs contrast enhancement process.Besides,GOAFED approach is employed to detect the edges in the retinal fundus images in which the use of GOA adjusts the membership functions.The ORB(Oriented FAST and Rotated BRIEF)feature extractor is exploited to generate feature vectors.Finally,Improved Conditional Variational Auto Encoder(ICAVE)is utilized for retinal image classification,shows the novelty of the work.The performance validation of the GOFEDRBVSC model is tested using benchmark dataset,and the comparative study highlighted the betterment of the GOFED-RBVSC model over the recent approaches.
基金This research was supported by the Research Fund for Etoctoral Program of Higher Education (No. 99025508)
文摘The objective assessment of fabric pilling based on light projection and image analysis has been exploited recently.The device for capturing the cross-sectional images of the pilled fabrics with light projection is elaborated.The detection of the profile line and integration of the sequential cross-sectional pilled image are discussed.The threshold based on Gaussian model is recommended for pill segmentation.The results show that the installed system is capable of eliminating the interference with pill information from the fabric color and pattern.