期刊文献+
共找到10,329篇文章
< 1 2 250 >
每页显示 20 50 100
A comparison of model choice strategies for logistic regression
1
作者 Markku Karhunen 《Journal of Data and Information Science》 CSCD 2024年第1期37-52,共16页
Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/appr... Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/approach:The study is based on Monte Carlo simulations.The methods are compared in terms of three measures of accuracy:specificity and two kinds of sensitivity.A loss function combining sensitivity and specificity is introduced and used for a final comparison.Findings:The choice of method depends on how much the users emphasize sensitivity against specificity.It also depends on the sample size.For a typical logistic regression setting with a moderate sample size and a small to moderate effect size,either BIC,BICc or Lasso seems to be optimal.Research limitations:Numerical simulations cannot cover the whole range of data-generating processes occurring with real-world data.Thus,more simulations are needed.Practical implications:Researchers can refer to these results if they believe that their data-generating process is somewhat similar to some of the scenarios presented in this paper.Alternatively,they could run their own simulations and calculate the loss function.Originality/value:This is a systematic comparison of model choice algorithms and heuristics in context of logistic regression.The distinction between two types of sensitivity and a comparison based on a loss function are methodological novelties. 展开更多
关键词 Model choice logistic regression Logit regression Monte Carlo simulations Sensitivity SPECIFICITY
下载PDF
Composition Analysis and Identification of Ancient Glass Products Based on L1 Regularization Logistic Regression
2
作者 Yuqiao Zhou Xinyang Xu Wenjing Ma 《Applied Mathematics》 2024年第1期51-64,共14页
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste... In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics. 展开更多
关键词 Glass Composition L1 Regularization logistic regression Model K-Means Clustering Analysis Elbow Rule Parameter Verification
下载PDF
Integration of Multiple Spectral Data via a Logistic Regression Algorithm for Detection of Crop Residue Burned Areas:A Case Study of Songnen Plain,Northeast China
3
作者 ZHANG Sumei ZHANG Yuan ZHAO Hongmei 《Chinese Geographical Science》 SCIE CSCD 2024年第3期548-563,共16页
The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate ... The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate estimation of cropland burned area is both crucial and challenging,especially for the small and fragmented burned scars in China.Here we developed an automated burned area mapping algorithm that was implemented using Sentinel-2 Multi Spectral Instrument(MSI)data and its effectiveness was tested taking Songnen Plain,Northeast China as a case using satellite image of 2020.We employed a logistic regression method for integrating multiple spectral data into a synthetic indicator,and compared the results with manually interpreted burned area reference maps and the Moderate-Resolution Imaging Spectroradiometer(MODIS)MCD64A1 burned area product.The overall accuracy of the single variable logistic regression was 77.38%to 86.90%and 73.47%to 97.14%for the 52TCQ and 51TYM cases,respectively.In comparison,the accuracy of the burned area map was improved to 87.14%and 98.33%for the 52TCQ and 51TYM cases,respectively by multiple variable logistic regression of Sentind-2 images.The balance of omission error and commission error was also improved.The integration of multiple spectral data combined with a logistic regression method proves to be effective for burned area detection,offering a highly automated process with an automatic threshold determination mechanism.This method exhibits excellent extensibility and flexibility taking the image tile as the operating unit.It is suitable for burned area detection at a regional scale and can also be implemented with other satellite data. 展开更多
关键词 crop residue burning burned area Sentinel-2 Multi Spectral Instrument(MSI) logistic regression Songnen Plain China
下载PDF
Utilization of Logistical Regression to the Modified Sine-Gordon Model in the MST Experiment
4
作者 Nizar J. Alkhateeb Hameed K. Ebraheem Eman M. Al-Otaibi 《Open Journal of Modelling and Simulation》 2024年第2期43-58,共16页
In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), ob... In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), observed to travel around the torus in Madison Symmetric Torus (MST). The LR analysis is used to utilize the modified Sine-Gordon dynamic equation model to predict with high confidence whether the slinky mode will lock or not lock when compared to the experimentally measured motion of the slinky mode. It is observed that under certain conditions, the slinky mode “locks” at or near the intersection of poloidal and/or toroidal gaps in MST. However, locked mode cease to travel around the torus;while unlocked mode keeps traveling without a change in the energy, making it hard to determine an exact set of conditions to predict locking/unlocking behaviour. The significant key model parameters determined by LR analysis are shown to improve the Sine-Gordon model’s ability to determine the locking/unlocking of magnetohydrodyamic (MHD) modes. The LR analysis of measured variables provides high confidence in anticipating locking versus unlocking of slinky mode proven by relational comparisons between simulations and the experimentally measured motion of the slinky mode in MST. 展开更多
关键词 Madison Symmetric Torus (MST) Magnetohydrodyamic (MHD) SINE-GORDON TOROIDAL Dynamic Modelling Reversed Field Pinch (RFP) logistical regression
下载PDF
Logistic Regression在我国河流水系氮污染研究中的应用 被引量:11
5
作者 高学民 陈静生 王立新 《环境科学学报》 CAS CSCD 北大核心 2000年第6期676-681,共6页
对四川省岷江、沱江及嘉陵江流域和江西省的赣江流域及鄱阳湖地区共 1 70多个水文站的数据进行了相关分析和多元回归分析 .结果表明 ,河流水中硝态氮浓度与年降雨量、人口密度、氮肥施用量、牲畜饲养量、农作物及粮食作物种植面积等因... 对四川省岷江、沱江及嘉陵江流域和江西省的赣江流域及鄱阳湖地区共 1 70多个水文站的数据进行了相关分析和多元回归分析 .结果表明 ,河流水中硝态氮浓度与年降雨量、人口密度、氮肥施用量、牲畜饲养量、农作物及粮食作物种植面积等因素有较好的相关性 .以以上数据资料为基础 ,将河流水NO3- N的浓度划分为背景浓度 (<0 7mg/L)、受人类活动的显著影响的NO3- N浓度 (>3 0mg/L)以及中间类 (0 7— 3 0mg/L)进行LogisticRegression分析 ,两个Logistic模型的准确度分别达 82 46%和 89 1 9% .运用Logistic模型对整个长江流域河流水中NO3- N浓度进行估计 ,结果与实测值基本相符合 . 展开更多
关键词 河流水 硝态氮 多元回归分析 污染源
下载PDF
用Logistic Regression侦察题目差异功能 被引量:1
6
作者 严芳 张增修 《应用心理学》 CSSCI 2001年第1期57-62,共6页
题目差异功能 (differentialitemfunctioning,DIF)是构造测验公平性的重要依据 ,DIF的研究与测验的效度有直接的关联。本文通过对DIF的提出作简要的回顾 ,着重介绍如何运用LogisticRegression探测一致性DIF和非一致性DIF ,并例证了学习... 题目差异功能 (differentialitemfunctioning,DIF)是构造测验公平性的重要依据 ,DIF的研究与测验的效度有直接的关联。本文通过对DIF的提出作简要的回顾 ,着重介绍如何运用LogisticRegression探测一致性DIF和非一致性DIF ,并例证了学习适应性测验 (AAT)的 6个项目在性别上存在题目差异功能。 展开更多
关键词 题目差异功能(DIF) 非一致性 DIF logistic regression
下载PDF
Lasso-Logistic回归模型拟合临床因素、NF-κB/NLRP3信号通路预测心肌梗死后缺血性心肌病价值
7
作者 杜然 滕腾 +2 位作者 赵云凤 方钱超 蔡丽丽 《中国急救复苏与灾害医学杂志》 2024年第6期705-709,747,共6页
目的基于Lasso-Logistic回归分析心肌梗死后缺血性心肌病(ICM)影响因素,探讨临床因素、核因子-κB(NF-κB)/核苷酸结合寡聚结构域样受体家族3(NLRP3)信号通路及Lasso-Logistic回归模型对心肌梗死后ICM的预测价值,为本病防治提供参考。... 目的基于Lasso-Logistic回归分析心肌梗死后缺血性心肌病(ICM)影响因素,探讨临床因素、核因子-κB(NF-κB)/核苷酸结合寡聚结构域样受体家族3(NLRP3)信号通路及Lasso-Logistic回归模型对心肌梗死后ICM的预测价值,为本病防治提供参考。方法选取2020年9月—2023年9月秦皇岛市第一医院收治的342例心肌梗死患者为研究对象进行前瞻性研究,按照7∶3比例分为建模组239例、验证组103例,依据经皮冠状动脉介入术(PCI)术后6个月内是否发生ICM分为ICM亚组、非ICM亚组。采用Lasso筛选心肌梗死后ICM发生相关变量,以有统计学意义变量构建临床因素模型,以NF-κB/NLRP3信号通路构建NF-κB/NLRP3信号通路模型,以临床因素、NF-κB/NLRP3联合建立混合模型(Lasso-Logistic回归模型)。对比不同预测模型对心肌梗死后ICM的预测价值。结果建模组ICM发生率为27.97%,验证组ICM发生率为26.47%;Lasso筛选出5个预测变量为NF-kB mRNA、NLRP3 mRNA、Gensini评分、LVEF、饮酒,Logistic回归分析显示,Gensini评分、NLRP3 mRNA、NF-κB mRNA、饮酒是心肌梗死后ICM影响因素(P<0.05);混合模型预测心肌梗死后ICM的AUC、敏感度、特异度分别为0.921、80.30%、88.82%,临床因素模型分别为0.886、78.79%、85.29%,NF-κB/NLRP3信号通路模型分别为0.873、74.24%、87.06%,混合模型的AUC高于临床因素模型、NF-κB/NLRP3信号通路模型(P<0.05)。结论Gensini评分、NLRP3 mRNA、NF-κB mRNA、饮酒是心肌梗死后ICM危险因素,联合上述影响因素建立Lasso-Logistic回归模型,该模型对心肌梗死后ICM具有一定预测效能,有助于临床早期筛查高危人群,并予以相应干预措施,以降低ICM发生风险。 展开更多
关键词 心肌梗死 缺血性心肌病 Lasso回归 logistic回归分析 核因子-ΚB 核苷酸结合寡聚结构域样受体家族3 预测
下载PDF
双模态Logistic Regression及其应用 被引量:1
8
作者 吴蕊 孔前进 +2 位作者 王世勋 孙东山 翟怡星 《计算机应用与软件》 北大核心 2020年第12期244-248,333,共6页
传统的Logistic Regression能够解决单一模态数据的二分类问题,但在处理多源异构数据时不能很好地利用不同模态间的语义相关性,从而降低了分类性能。为了对双模态数据进行建模,提出同时包含模态内语义信息和模态间语义相关性的双模态Log... 传统的Logistic Regression能够解决单一模态数据的二分类问题,但在处理多源异构数据时不能很好地利用不同模态间的语义相关性,从而降低了分类性能。为了对双模态数据进行建模,提出同时包含模态内语义信息和模态间语义相关性的双模态Logistic Regression模型。设计一个包含模态内损耗与模态间损耗的目标函数,利用梯度下降法优化目标函数,在每次迭代过程中该模型能够根据一定策略交替地更新不同模态的参数。实验结果表明,双模态Logistic Regression能够获得较好的分类性能和跨模态检索效果。 展开更多
关键词 双模态logistic regression 梯度下降法 模态内损耗 模态间损耗 跨模态检索
下载PDF
Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia 被引量:11
9
作者 Andang Suryana SOMA Tetsuya KUBOTA Hideaki MIZUNO 《Journal of Mountain Science》 SCIE CSCD 2019年第2期383-401,共19页
Landslide susceptibility maps(LSMs) play a vital role in assisting land use planning and risk mitigation. This study aims to optimize causative factors using logistic regression(LR) and an artificial neural network(AN... Landslide susceptibility maps(LSMs) play a vital role in assisting land use planning and risk mitigation. This study aims to optimize causative factors using logistic regression(LR) and an artificial neural network(ANN) to produce a LSM. The LSM is produced with 11 causative factors and then optimized using forward-stepwise LR(FSLR), ANN, and their combination(FSLR-ANN) until eight causative factors were found for each method. The ANN method produced superior validation results compared with LR. The ROC values for the training data set ranges between 0.8 and 0.9. On the other hand, validation with the percentage of landslide fall into LSM class high and very high, ANN method was higher(92.59%) than LR(82.12%). FSLR-ANN with nine causative factors gave the best validation results with respect to area under curve(AUC) values, and validation with the percentage of landslide fall into LSM class high and very high. In conclusion, ANN was found to be better than LR when producing LSMs. The best Optimization was combination of FSLR-ANN with nine causative factors and AUC success rate 0.847, predictive rate 0.844 and validation with landslide fall into high and very high class with 91.30%. It is an encouraging preliminary model towards a systematic introduction of FSLR-ANN model for optimization causative factors in landslide susceptibility assessment in the mountainous area of Ujung Loe Watershed. 展开更多
关键词 Optimized CAUSATIVE factor Landslide logistic regression Artificial neural network Indonesia
下载PDF
Evaluating effectiveness of frequency ratio, fuzzy logic and logistic regression models in assessing landslide susceptibility: a case from Rudraprayag district, India 被引量:7
10
作者 Mehebub SAHANA Haroon SAJJAD 《Journal of Mountain Science》 SCIE CSCD 2017年第11期2150-2167,共18页
Rudraprayag in Garhwal Himalayan division is one of the most vulnerable districts to landslides in India. Heavy rainfall, steep slope and developmental activities are important factors for the occurrence of landslides... Rudraprayag in Garhwal Himalayan division is one of the most vulnerable districts to landslides in India. Heavy rainfall, steep slope and developmental activities are important factors for the occurrence of landslides in the district. Therefore, specific assessment of landslide susceptibility and its accuracy at regional level is essential for disaster management and proper land use planning. The article evaluates effectiveness of frequency ratio, fuzzy logic and logistic regression models for assessing landslide susceptibility in Rudraprayag district of Uttarakhand state, India. A landslide inventory map was prepared and verified by field data. Fourteen landslide parameters and generated inventory map were utilized to prepare landslide susceptibility maps through frequency ratio, fuzzy logic and logistic regression models. Landslide susceptibility maps generated through these models were classified into very high, high, medium, low and very low categories using natural breaks classification. Receiver operating characteristics(ROC) curve, spatially agreed area approach and seed cell area index(SCAI) method were used to validate the landslide models. Validation results revealed that fuzzy logic model was found to be more effective in assessing landslide susceptibility in the study area. The landslide susceptibility map generated through fuzzy logic model can be best utilized for landslide disaster management and effective land use planning. 展开更多
关键词 LANDSLIDE SUSCEPTIBILITY Frequency ratio logistic regression Natural BREAKS classification Remote sensing GEOGRAPHIC information system
下载PDF
Susceptibility Assessment of Landslides Caused by the Wenchuan Earthquake Using a Logistic Regression Model 被引量:14
11
作者 SU Fenghuan 《Journal of Mountain Science》 SCIE CSCD 2010年第3期234-245,共12页
The Wenchuan earthquake on May 12,2008 caused numerous collapses,landslides,barrier lakes,and debris flows.Landslide susceptibility mapping is important for evaluation of environmental capacity and also as a guide for... The Wenchuan earthquake on May 12,2008 caused numerous collapses,landslides,barrier lakes,and debris flows.Landslide susceptibility mapping is important for evaluation of environmental capacity and also as a guide for post-earthquake reconstruction.In this paper,a logistic regression model was developed within the framework of GIS to map landslide susceptibility.Qingchuan County,a heavily affected area,was selected for the study.Distribution of landslides was prepared by interpretation of multi-temporal and multi-resolution remote sensing images(ADS40 aerial imagery,SPOT5 imagery and TM imagery,etc.) and field surveys.The Certainly Factor method was used to find the influencial factors,indicating that lithologic groups,distance from major faults,slope angle,profile curvature,and altitude are the dominant factors influencing landslides.The weight of each factor was determined using a binomial logistic regression model.Landslide susceptibility mapping was based on spatial overlay analysis and divided into five classes.Major faults have the most significant impact,and landslides will occur most likely in areas near the faults.Onethird of the area has a high or very high susceptibility,located in the northeast,south and southwest,including 65.3% of all landslides coincident with the earthquake.The susceptibility map can reveal the likelihood of future failures,and it will be useful for planners during the rebuilding process and for future zoning issues. 展开更多
关键词 Landslide susceptibility WenchuanEarthquake GIS logistic regression certainty factor
下载PDF
Evaluation of Inference Adequacy in Cumulative Logistic Regression Models:An Empirical Validation of ISW-Ridge Relationships 被引量:3
12
作者 Cheng-Wu CHEN Hsien-Chueh Peter YANG +2 位作者 Chen-Yuan CHEN Alex Kung-Hsiung CHANG Tsung-Hao CHEN 《China Ocean Engineering》 SCIE EI 2008年第1期43-56,共14页
Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ri... Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ridge height and potential energy during wave-ridge interaction with a binary and cumulative logistic regression model. In testing the Global Null Hypothesis, all values are p 〈0.001, with three statistical methods, such as Likelihood Ratio, Score, and Wald. While comparing with two kinds of models, tests values obtained by cumulative logistic regression models are better than those by binary logistic regression models. Although this study employed cumulative logistic regression model, three probability functions p^1, p^2 and p^3, are utilized for investigating the weighted influence of factors on wave reflection. Deviance and Pearson tests are applied to cheek the goodness-of-fit of the proposed model. The analytical results demonstrated that both ridge height (X1 ) and potential energy (X2 ) significantly impact (p 〈 0. 0001 ) the amplitude-based refleeted rate; the P-values for the deviance and Pearson are all 〉 0.05 (0.2839, 0.3438, respectively). That is, the goodness-of-fit between ridge height ( X1 ) and potential energy (X2) can further predict parameters under the scenario of the best parsimonious model. Investigation of 6 predictive powers ( R2, Max-rescaled R^2, Sorners' D, Gamma, Tau-a, and c, respectively) indicate that these predictive estimates of the proposed model have better predictive ability than ridge height alone, and are very similar to the interaction of ridge height and potential energy. It can be concluded that the goodness-of-fit and prediction ability of the cumulative logistic regression model are better than that of the binary logistic regression model. 展开更多
关键词 binary logistic regression cumulative logistic regression model GOODNESS-OF-FIT internal solitary wave amplitude-based transmission rate
下载PDF
GIS-based logistic regression method for landslide susceptibility mapping in regional scale 被引量:9
13
作者 ZHU Lei HUANG Jing-feng 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第12期2007-2017,共11页
Landslide susceptibility map is one of the study fields portraying the spatial distribution of future slope failure sus- ceptibility. This paper deals with past methods for producing landslide susceptibility map and d... Landslide susceptibility map is one of the study fields portraying the spatial distribution of future slope failure sus- ceptibility. This paper deals with past methods for producing landslide susceptibility map and divides these methods into 3 types. The logistic linear regression approach is further elaborated on by crosstabs method, which is used to analyze the relationship between the categorical or binary response variable and one or more continuous or categorical or binary explanatory variables derived from samples. It is an objective assignment of coefficients serving as weights of various factors under considerations while expert opinions make great difference in heuristic approaches. Different from deterministic approach, it is very applicable to regional scale. In this study, double logistic regression is applied in the study area. The entire study area is first analyzed. The logistic regression equation showed that elevation, proximity to road, river and residential area are main factors triggering land- slide occurrence in this area. The prediction accuracy of the first landslide susceptibility map was showed to be 80%. Along the road and residential area, almost all areas are in high landslide susceptibility zone. Some non-landslide areas are incorrectly divided into high and medium landslide susceptibility zone. In order to improve the status, a second logistic regression was done in high landslide susceptibility zone using landslide cells and non-landslide sample cells in this area. In the second logistic regression analysis, only engineering and geological conditions are important in these areas and are entered in the new logistic regression equation indicating that only areas with unstable engineering and geological conditions are prone to landslide during large scale engineering activity. Taking these two logistic regression results into account yields a new landslide susceptibility map. Double logistic regression analysis improved the non-landslide prediction accuracy. During calculation of parameters for logistic regres- sion, landslide density is used to transform nominal variable to numeric variable and this avoids the creation of an excessively high number of dummy variables. 展开更多
关键词 LANDSLIDE SUSCEPTIBILITY logistic regression GIS Spatial analysis
下载PDF
Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed,Gansu Province,China 被引量:20
14
作者 DU Guo-liang ZHANG Yong-shuang +2 位作者 IQBAL Javed YANG Zhi-hua YAO Xin 《Journal of Mountain Science》 SCIE CSCD 2017年第2期249-268,共20页
Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence... Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups,(i) training dataset and(ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages,distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation. 展开更多
关键词 Landslide susceptibility Integrated model Information value method logistic regression Bailongjiang watershed
下载PDF
GIS based Landslide Susceptibility Mapping of Tevankarai Ar Sub-watershed,Kodaikkanal,India using Binary Logistic Regression Analysis 被引量:12
15
作者 Sujatha E RAMANI Kumarvel PITCHAIMANI Victor Rajamanickam GNANAMANICKAM 《Journal of Mountain Science》 SCIE CSCD 2011年第4期505-517,共13页
Landslide susceptibility mapping is the first step in regional hazard management as it helps to understand the spatial distribution of the probability of slope failure in an area.An attempt is made to map the landslid... Landslide susceptibility mapping is the first step in regional hazard management as it helps to understand the spatial distribution of the probability of slope failure in an area.An attempt is made to map the landslide susceptibility in Tevankarai Ar subwatershed,Kodaikkanal,India using binary logistic regression analysis.Geographic Information System is used to prepare the database of the predictor variables and landslide inventory map,which is used to build the spatial model of landslide susceptibility.The model describes the relationship between the dependent variable(presence and absence of landslide) and the independent variables selected for study(predictor variables) by the best fitting function.A forward stepwise logistic regression model using maximum likelihood estimation is used in the regression analysis.An inventory of 84 landslides and cells within a buffer distance of 10m around the landslide is used as the dependent variable.Relief,slope,aspect,plan curvature,profile curvature,land use,soil,topographic wetness index,proximity to roads and proximity to lineaments are taken as independent variables.The constant and the coefficient of the predictor variable retained by the regression model are used to calculate the probability of slope failure and analyze the effect of each predictor variable on landslide occurrence in thestudy area.The model shows that the most significant parameter contributing to landslides is slope.The other significant parameters are profile curvature,soil,road,wetness index and relief.The predictive logistic regression model is validated using temporal validation data-set of known landslide locations and shows an accuracy of 85.29 %. 展开更多
关键词 Landslide Susceptibility Binary logistic regression GIS Kodaikkanal INDIA
下载PDF
Multi-parameter ultrasound based on the logistic regression model in the differential diagnosis of hepatocellular adenoma and focal nodular hyperplasia 被引量:3
16
作者 Meng Wu Ru-Hai Zhou +5 位作者 Feng Xu Xian-Peng Li Ping Zhao Rui Yuan Yu-Peng Lan Wei-Xia Zhou 《World Journal of Gastrointestinal Oncology》 SCIE CAS 2019年第12期1193-1205,共13页
BACKGROUND Focal nodular hyperplasia(FNH)has very low potential risk,and a tendency to spontaneously resolve.Hepatocellular adenoma(HCA)has a certain malignant tendency,and its prognosis is significantly different fro... BACKGROUND Focal nodular hyperplasia(FNH)has very low potential risk,and a tendency to spontaneously resolve.Hepatocellular adenoma(HCA)has a certain malignant tendency,and its prognosis is significantly different from FNH.Accurate identification of HCA and FNH is critical for clinical treatment.AIM To analyze the value of multi-parameter ultrasound index based on logistic regression for the differential diagnosis of HCA and FNH.METHODS Thirty-one patients with HCA were included in the HCA group.Fifty patients with FNH were included in the FNH group.The clinical data were collected and recorded in the two groups.Conventional ultrasound,shear wave elastography,and contrast-enhanced ultrasound were performed,and the lesion location,lesion echo,Young’s modulus(YM)value,YM ratio,and changes of time intense curve(TIC)were recorded.Multivariate logistic regression analysis was used to screen the indicators that can be used for the differential diagnosis of HCA and FNH.A ROC curve was established for the potential indicators to analyze the accuracy of the differential diagnosis of HCA and FNH.The value of the combined indicators for distinguishing HCA and FNH were explored.RESULTS Multivariate logistic regression analysis showed that lesion echo(P=0.000),YM value(P=0.000)and TIC decreasing slope(P=0.000)were the potential indicators identifying HCA and FNH.In the ROC curve analysis,the accuracy of the YM value distinguishing HCA and FNH was the highest(AUC=0.891),which was significantly higher than the AUC of the lesion echo and the TIC decreasing slope(P<0.05).The accuracy of the combined diagnosis was the highest(AUC=0.938),which was significantly higher than the AUC of the indicators diagnosing HCA individually(P<0.05).This sensitivity was 91.23%,and the specificity was 83.33%.CONCLUSION The combination of lesion echo,YM value and TIC decreasing slope can accurately differentiate between HCA and FNH. 展开更多
关键词 Hepatocellular ADENOMA Focal NODULAR HYPERPLASIA ULTRASOUND logistic regression
下载PDF
Application of a Novel Method for Machine Performance Degradation Assessment Based on Gaussian Mixture Model and Logistic Regression 被引量:3
17
作者 LIU Wenbin ZHONG Xin +2 位作者 LEE Jay LIAO Linxia ZHOU Min 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期879-884,共6页
The currently prevalent machine performance degradation assessment techniques involve estimating a machine's current condition based upon the recognition of indications of failure features,which entail complete data ... The currently prevalent machine performance degradation assessment techniques involve estimating a machine's current condition based upon the recognition of indications of failure features,which entail complete data collected in different conditions.However,failure data are always hard to acquire,thus making those techniques hard to be applied.In this paper,a novel method which does not need failure history data is introduced.Wavelet packet decomposition(WPD) is used to extract features from raw signals,principal component analysis(PCA) is utilized to reduce feature dimensions,and Gaussian mixture model(GMM) is then applied to approximate the feature space distributions.Single-channel confidence value(SCV) is calculated by the overlap between GMM of the monitoring condition and that of the normal condition,which can indicate the performance of single-channel.Furthermore,multi-channel confidence value(MCV),which can be deemed as the overall performance index of multi-channel,is calculated via logistic regression(LR) and that the task of decision-level sensor fusion is also completed.Both SCV and MCV can serve as the basis on which proactive maintenance measures can be taken,thus preventing machine breakdown.The method has been adopted to assess the performance of the turbine of a centrifugal compressor in a factory of Petro-China,and the result shows that it can effectively complete this task.The proposed method has engineering significance for machine performance degradation assessment. 展开更多
关键词 performance degradation assessment Gaussian mixture model logistic regression proactive maintenance sensor fusion
下载PDF
A Review of the Logistic Regression Model with Emphasis on Medical Research 被引量:8
18
作者 Ernest Yeboah Boateng Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2019年第4期190-207,共18页
This study explored and reviewed the logistic regression (LR) model, a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, with emphasis on m... This study explored and reviewed the logistic regression (LR) model, a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, with emphasis on medical research. Thirty seven research articles published between 2000 and 2018 which employed logistic regression as the main statistical tool as well as six text books on logistic regression were reviewed. Logistic regression concepts such as odds, odds ratio, logit transformation, logistic curve, assumption, selecting dependent and independent variables, model fitting, reporting and interpreting were presented. Upon perusing the literature, considerable deficiencies were found in both the use and reporting of LR. For many studies, the ratio of the number of outcome events to predictor variables (events per variable) was sufficiently small to call into question the accuracy of the regression model. Also, most studies did not report on validation analysis, regression diagnostics or goodness-of-fit measures;measures which authenticate the robustness of the LR model. Here, we demonstrate a good example of the application of the LR model using data obtained on a cohort of pregnant women and the factors that influence their decision to opt for caesarean delivery or vaginal birth. It is recommended that researchers should be more rigorous and pay greater attention to guidelines concerning the use and reporting of LR models. 展开更多
关键词 logistic regression Model Validation Analysis GOODNESS-OF-FIT Measures Odds RATIO LIKELIHOOD RATIO TEST Hosmer-Lemeshow TEST Wald Statistic MEDICAL RESEARCH
下载PDF
Landslide Susceptibility Assessment of the Youfang Catchment using Logistic Regression 被引量:6
19
作者 BAI Shi-biao LU Ping WANG Jian 《Journal of Mountain Science》 SCIE CSCD 2015年第4期816-827,共12页
A detailed landslide susceptibility map was produced in the Youfang catchment using logistic regression method with datasets developed for a geographic information system(GIS).Known as one of the most landslide-prone ... A detailed landslide susceptibility map was produced in the Youfang catchment using logistic regression method with datasets developed for a geographic information system(GIS).Known as one of the most landslide-prone areas in China, the Youfang catchment of Longnan mountain region,which lies in the transitional area among QinghaiTibet Plateau, loess Plateau and Sichuan Basin, was selected as a representative case to evaluate the frequency and distribution of landslides.Statistical relationships for landslide susceptibility assessment were developed using landslide and landslide causative factor databases.Logistic regression(LR)was used to create the landslide susceptibility maps based on a series of available data sources: landslide inventory; distance to drainage systems, faults and roads; slope angle and aspect; topographic elevation and topographical wetness index, and land use.The quality of the landslide susceptibility map produced in this paper was validated and the result can be used fordesigning protective and mitigation measures against landslide hazards.The landslide susceptibility map is expected to provide a fundamental tool for landslide hazards assessment and risk management in the Youfang catchment. 展开更多
关键词 LANDSLIDE Susceptibility map logistic regression Geographic Information System(GIS) Youfang catchment
下载PDF
An Investigation of Landslide Susceptibility Using Logistic Regression and Statistical Index Methods in Dailekh District, Nepal 被引量:4
20
作者 DIL Kumar RAI XIONG Donghong +5 位作者 ZHAO Wei ZHAO Dongmei ZHANG Baojun NIRMAL Mani DAHAL WU Yanhong MUHAMMAD Aslam BAIG 《Chinese Geographical Science》 SCIE CSCD 2022年第5期834-851,共18页
Landslide distribution and susceptibility mapping are the fundamental steps for landslide-related hazard and disaster risk management activities, especially in the Himalaya region which has resulted in a great deal of... Landslide distribution and susceptibility mapping are the fundamental steps for landslide-related hazard and disaster risk management activities, especially in the Himalaya region which has resulted in a great deal of death and damage to property. To better understand the landslide condition in the Nepal Himalaya, we carried out an investigation on the landslide distribution and susceptibility using the landslide inventory data and 12 different contributing factors in the Dailekh district, Western Nepal. Based on the evaluation of the frequency distribution of the landslide, the relationship between the landslide and the various contributing factors was determined.Then, the landslide susceptibility was calculated using logistic regression and statistical index methods along with different topographic(slope, aspect, relative relief, plan curvature, altitude, topographic wetness index) and non-topographic factors(distance from river, normalized difference vegetation index(NDVI), distance from road, precipitation, land use and land cover, and geology), and 470(70%) of total 658 landslides. The receiver operating characteristic(ROC) curve analysis using 198(30%) of total landslides showed that the prediction curve rates(area under the curve, AUC) values for two methods(logistic regression and statistical index) were 0.826, and 0.823with success rates of 0.793, and 0.811, respectively. The values of R-Index for the logistic regression and statistical index methods were83.66 and 88.54, respectively, consisting of high susceptible hazard classes. In general, this research concluded that the cohesive and coherent natural interplay of topographic and non-topographic factors strongly affects landslide occurrence, distribution, and susceptibility condition in the Nepal Himalaya region. Furthermore, the reliability of these two methods is verified for landslide susceptibility mapping in Nepal’s central mountain region. 展开更多
关键词 landslide characteristics landslide susceptibility logistic regression statistical index Nepal Himalaya
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部