An investigation into the aircraft flight simulation and control system is presented in this paper. The study was firstly focused on the establishment of an integrated hardware-in-the-loop(HITL) platform for aircraf...An investigation into the aircraft flight simulation and control system is presented in this paper. The study was firstly focused on the establishment of an integrated hardware-in-the-loop(HITL) platform for aircraft flight simulation based on MATLAB/Simulink + dSPACE. The platform combines the abundant software and hardware resources of dSPACE simulation platform to simulate the flight attitude of an aircraft in six-DOF ( degree of freedom) motion. Based on the platform, the study was then focused on the flight numerical simulation by taking a loitering aerial vehicle as an example. An aircraft mathematical model was created for a modular design and off-line numerical simulation based on MATLAB/Simulink. Finally, the study was focused on the control system design of the loitering aerial vehicle and conduct of an HITL simulation experiment for the vehicle pitch control. The experiment verifies the system design and control effectiveness. Research results show that the dSPACE simulation system provides a real time good experimental platform to improve the efficiency of study and development of a flight control system.展开更多
A current statistical model for maneuvering acceleration using an adaptive extended Kalman filter(CS-MAEKF) algorithm is proposed to solve problems existing in conventional extended Kalman filters such as large esti...A current statistical model for maneuvering acceleration using an adaptive extended Kalman filter(CS-MAEKF) algorithm is proposed to solve problems existing in conventional extended Kalman filters such as large estimation error and divergent tendencies in the presence of continuous maneuvering acceleration. A membership function is introduced in this algorithm to adaptively modify the upper and lower limits of loitering vehicles' maneuvering acceleration and for realtime adjustment of maneuvering acceleration variance. This allows the algorithm to have superior static and dynamic performance for loitering vehicles undergoing different maneuvers. Digital simulations and dynamic flight testing show that the yaw angle accuracy of the algorithm is 30% better than conventional algorithms, and pitch and roll angle calculation precision is improved by 60%.The mean square deviation of heading and attitude angle error during dynamic flight is less than3.05°. Experimental results show that CS-MAEKF meets the application requirements of miniature loitering vehicles.展开更多
基金Sponsored by the Ministerial Level Advanced Research Foundation(A26020060253)
文摘An investigation into the aircraft flight simulation and control system is presented in this paper. The study was firstly focused on the establishment of an integrated hardware-in-the-loop(HITL) platform for aircraft flight simulation based on MATLAB/Simulink + dSPACE. The platform combines the abundant software and hardware resources of dSPACE simulation platform to simulate the flight attitude of an aircraft in six-DOF ( degree of freedom) motion. Based on the platform, the study was then focused on the flight numerical simulation by taking a loitering aerial vehicle as an example. An aircraft mathematical model was created for a modular design and off-line numerical simulation based on MATLAB/Simulink. Finally, the study was focused on the control system design of the loitering aerial vehicle and conduct of an HITL simulation experiment for the vehicle pitch control. The experiment verifies the system design and control effectiveness. Research results show that the dSPACE simulation system provides a real time good experimental platform to improve the efficiency of study and development of a flight control system.
文摘A current statistical model for maneuvering acceleration using an adaptive extended Kalman filter(CS-MAEKF) algorithm is proposed to solve problems existing in conventional extended Kalman filters such as large estimation error and divergent tendencies in the presence of continuous maneuvering acceleration. A membership function is introduced in this algorithm to adaptively modify the upper and lower limits of loitering vehicles' maneuvering acceleration and for realtime adjustment of maneuvering acceleration variance. This allows the algorithm to have superior static and dynamic performance for loitering vehicles undergoing different maneuvers. Digital simulations and dynamic flight testing show that the yaw angle accuracy of the algorithm is 30% better than conventional algorithms, and pitch and roll angle calculation precision is improved by 60%.The mean square deviation of heading and attitude angle error during dynamic flight is less than3.05°. Experimental results show that CS-MAEKF meets the application requirements of miniature loitering vehicles.