利用GNSS-MR(Global Navigation Satellite System Multipath Reflectometry)技术反演积雪深度是近年来一种新兴的卫星遥感技术。目前大多数研究仅使用GPS(Global Position System)数据限制了该技术的发展,为了扩展GNSS-MR算法的应用,...利用GNSS-MR(Global Navigation Satellite System Multipath Reflectometry)技术反演积雪深度是近年来一种新兴的卫星遥感技术。目前大多数研究仅使用GPS(Global Position System)数据限制了该技术的发展,为了扩展GNSS-MR算法的应用,介绍了基于GNSS-MR算法的雪深反演模型。首先,通过多项式拟合分解GLONASS观测数据获取高精度的信噪比残差序列;然后,利用Lomb-Scargle谱分析法对其进行频谱分析可解算雪深值。选取IGS中心的YEL2站2015年11月到2016年6月共243天的GLONASS卫星L1波段反射信号的SNR数据进行实例分析,并以美国国家气象数据中心提供的加拿大Y-H (Yellowknife Henderson)气象站的实测雪深数据为真值,将反演雪深与实测雪深进行对比验证。所得实验结果如下:(1)与GPS卫星的反演值相比,基于GLONASS-MR(GLONASS Multipath Reflectometry)技术反演积雪深度的精度同样能达到厘米级,RMSE仅3.3 cm,反演值与实测值的空间分布趋势一致且相关性较强,其相关系数R2高达0.969;(2)不同的积雪深度对信噪比的振幅频率与垂直反射距离具有直接影响;(3)对同一卫星而言,信噪比的频谱振幅强度峰值与其对应的反演值存在线性相关;(4)在相同条件下,采用多颗GLONASS卫星数据比单颗GLONASS卫星数据反演雪深的效果明显更优。基于反演的高时间分辨率产品,分析该地区雪深日变化的情况,实验结果表明基于陆基CORS站的GLONASS-MR技术在用于实时、连续的雪深变化监测方面具有良好的潜力和可行性。展开更多