As the smart home is the end-point power consumer, it is the major part to be controlled in a smart micro grid. There are so many challenges for implementing a smart home system in which the most important ones are th...As the smart home is the end-point power consumer, it is the major part to be controlled in a smart micro grid. There are so many challenges for implementing a smart home system in which the most important ones are the cost and simplicity of the implementation method. It is clear that the major share of the total cost is referred to the internal controlling system network; although there are too many methods proposed but still there is not any satisfying method at the consumers' point of view. In this paper, a novel solution for this demand is proposed, which not only minimizes the implementation cost, but also provides a high level of reliability and simplicity of operation; feasibility, extendibility, and flexibility are other leading properties of the design.展开更多
Integration of unpredictable renewable power sources into the Grid is leading to the development of wide area control algorithms and smart grid. Smart meters are the first step in the building a smart consumer interfa...Integration of unpredictable renewable power sources into the Grid is leading to the development of wide area control algorithms and smart grid. Smart meters are the first step in the building a smart consumer interface. Much more, however, would be required in building a smart grid than just smart meters. This paper explores the conceptual architecture of smart grid. It highlights the need for additional infrastructure to realize full potential of smart grid. The information presented in this paper is an attempt to uncover what the future in smart grid could be and what infrastructure would be required to tap its potential. As smart grid evolves, more functionality would be built in the constituents. The paper also proposes mathematical basis for some of the controller algorithms.展开更多
During the last decade the emergence of Internet of Things(IoT)based applications inspired the world by providing state of the art solutions to many common problems.From traffic management systems to urban cities plan...During the last decade the emergence of Internet of Things(IoT)based applications inspired the world by providing state of the art solutions to many common problems.From traffic management systems to urban cities planning and development,IoT based home monitoring systems,and many other smart applications.Regardless of these facilities,most of these IoT based solutions are data driven and results in small accuracy values for smaller datasets.In order to address this problem,this paper presents deep learning based hybrid approach for the development of an IoT-based intelligent home security and appliance control system in the smart cities.This hybrid model consists of;convolution neural network and binary long short term model for the object detection to ensure safety of the homes while IoT based hardware components like;Raspberry Pi,Amazon Web services cloud,and GSM modems for remotely accessing and controlling of the home appliances.An android application is developed and deployed on Amazon Web Services(AWS)cloud for the remote monitoring of home appliances.A GSM device and Message queuing telemetry transport(MQTT)are integrated for communicating with the connected IoT devices to ensure the online and offline communication.For object detection purposes a camera is connected to Raspberry Pi using the proposed hybrid neural network model.The applicability of the proposed model is tested by calculating results for the object at varying distance from the camera and for different intensity levels of the light.Besides many applications the proposed model promises for providing optimum results for the small amount of data and results in high recognition rates of 95.34%compared to the conventional recognition model(k nearest neighbours)recognition rate of 76%.展开更多
Boolean control network consists of a set of Boolean variables whose state is determined by other variables in the network. Boolean network is used for modeling complex system. In this paper, we have presented a model...Boolean control network consists of a set of Boolean variables whose state is determined by other variables in the network. Boolean network is used for modeling complex system. In this paper, we have presented a model of a context-aware system used in smart home based on Boolean control networks. This modeling describes the relationship between the context elements (person, time, location, and activity) and services (Morning Call, Sleeping, Guarding, Entertainment, and normal), which is effective to logical inference. We apply semi tensor matrix product to describe the dynamic of the system. This matrix form of expression is a convenient and reasonable way to design logic control system.展开更多
with the development of science and technology, smart home systems require better, faster to meet the needs of human. In order to achieve this goal, the human-machine-items all need to interact each other with underst...with the development of science and technology, smart home systems require better, faster to meet the needs of human. In order to achieve this goal, the human-machine-items all need to interact each other with understand, efficient and speedy. Cps could unify combination with the human-machine-items; realize the interaction between the physical nformation and the cyber world. However, information interaction and the control task needs to be completed in a valid time. Therefore, the transform delay control strategy becomes more and more important. This paper analysis Markov delay control strategy for smart home systems, which might help the system decrease the transmission delay.展开更多
Advances in mobile communication bring great effects on people’s life styles. This paper describes the implementation of a remote control scheme, Remote Control System via Bluetooth and SMS (Short Message Service), w...Advances in mobile communication bring great effects on people’s life styles. This paper describes the implementation of a remote control scheme, Remote Control System via Bluetooth and SMS (Short Message Service), which controls smart home in short distance and long distance, respectively. Although SMS is widely used for a variety of applications, it is not suitable for the purpose of remote control because it suffers from transmission delay, loss and lacks of confidentiality. This paper proposes a SMS-based protocol, which is designed with the mechanisms of reliable transmission and information encryption, thus it is capable of the implementation of secure and reliable control.展开更多
Protecting private data in smart homes,a popular Internet-of-Things(IoT)application,remains a significant data security and privacy challenge due to the large-scale development and distributed nature of IoT networks.R...Protecting private data in smart homes,a popular Internet-of-Things(IoT)application,remains a significant data security and privacy challenge due to the large-scale development and distributed nature of IoT networks.Recently,smart healthcare has leveraged smart home systems,thereby compounding security concerns in terms of the confidentiality of sensitive and private data and by extension the privacy of the data owner.However,proof-of-authority(PoA)-based blockchain distributed ledger technology(DLT)has emerged as a promising solution for protecting private data from indiscriminate use and thereby preserving the privacy of individuals residing in IoT-enabled smart homes.This review elicits some concerns,issues,and problems that have hindered the adoption of blockchain and IoT(BCoT)in some domains and suggests requisite solutions using the aging-in-place scenario.Implementation issues with BCoT were examined as well as the combined challenges BCoT can pose when utilised for security gains.The study discusses recent findings,opportunities,and barriers,and provides recommendations that could facilitate the continuous growth of blockchain applications in healthcare.Lastly,the study explored the potential of using a PoA-based permission blockchain with an applicable consent-based privacy model for decision-making in the information disclosure process,including the use of publisher-subscriber contracts for fine-grained access control to ensure secure data processing and sharing,as well as ethical trust in personal information disclosure,as a solution direction.The proposed authorisation framework could guarantee data ownership,conditional access management,scalable and tamper-proof data storage,and a more resilient system against threat models such as interception and insider attacks.展开更多
As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study ai...As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.展开更多
文摘As the smart home is the end-point power consumer, it is the major part to be controlled in a smart micro grid. There are so many challenges for implementing a smart home system in which the most important ones are the cost and simplicity of the implementation method. It is clear that the major share of the total cost is referred to the internal controlling system network; although there are too many methods proposed but still there is not any satisfying method at the consumers' point of view. In this paper, a novel solution for this demand is proposed, which not only minimizes the implementation cost, but also provides a high level of reliability and simplicity of operation; feasibility, extendibility, and flexibility are other leading properties of the design.
文摘Integration of unpredictable renewable power sources into the Grid is leading to the development of wide area control algorithms and smart grid. Smart meters are the first step in the building a smart consumer interface. Much more, however, would be required in building a smart grid than just smart meters. This paper explores the conceptual architecture of smart grid. It highlights the need for additional infrastructure to realize full potential of smart grid. The information presented in this paper is an attempt to uncover what the future in smart grid could be and what infrastructure would be required to tap its potential. As smart grid evolves, more functionality would be built in the constituents. The paper also proposes mathematical basis for some of the controller algorithms.
基金supported by Department of Accounting and Information Systems,College of Business and Economics,Qatar University,Doha,Qatar and Department of Computer Science,University of Swabi,KP,Pakistanfunded by Qatar University Internal Grant under Grant No.IRCC-2020-009.
文摘During the last decade the emergence of Internet of Things(IoT)based applications inspired the world by providing state of the art solutions to many common problems.From traffic management systems to urban cities planning and development,IoT based home monitoring systems,and many other smart applications.Regardless of these facilities,most of these IoT based solutions are data driven and results in small accuracy values for smaller datasets.In order to address this problem,this paper presents deep learning based hybrid approach for the development of an IoT-based intelligent home security and appliance control system in the smart cities.This hybrid model consists of;convolution neural network and binary long short term model for the object detection to ensure safety of the homes while IoT based hardware components like;Raspberry Pi,Amazon Web services cloud,and GSM modems for remotely accessing and controlling of the home appliances.An android application is developed and deployed on Amazon Web Services(AWS)cloud for the remote monitoring of home appliances.A GSM device and Message queuing telemetry transport(MQTT)are integrated for communicating with the connected IoT devices to ensure the online and offline communication.For object detection purposes a camera is connected to Raspberry Pi using the proposed hybrid neural network model.The applicability of the proposed model is tested by calculating results for the object at varying distance from the camera and for different intensity levels of the light.Besides many applications the proposed model promises for providing optimum results for the small amount of data and results in high recognition rates of 95.34%compared to the conventional recognition model(k nearest neighbours)recognition rate of 76%.
文摘Boolean control network consists of a set of Boolean variables whose state is determined by other variables in the network. Boolean network is used for modeling complex system. In this paper, we have presented a model of a context-aware system used in smart home based on Boolean control networks. This modeling describes the relationship between the context elements (person, time, location, and activity) and services (Morning Call, Sleeping, Guarding, Entertainment, and normal), which is effective to logical inference. We apply semi tensor matrix product to describe the dynamic of the system. This matrix form of expression is a convenient and reasonable way to design logic control system.
文摘with the development of science and technology, smart home systems require better, faster to meet the needs of human. In order to achieve this goal, the human-machine-items all need to interact each other with understand, efficient and speedy. Cps could unify combination with the human-machine-items; realize the interaction between the physical nformation and the cyber world. However, information interaction and the control task needs to be completed in a valid time. Therefore, the transform delay control strategy becomes more and more important. This paper analysis Markov delay control strategy for smart home systems, which might help the system decrease the transmission delay.
文摘Advances in mobile communication bring great effects on people’s life styles. This paper describes the implementation of a remote control scheme, Remote Control System via Bluetooth and SMS (Short Message Service), which controls smart home in short distance and long distance, respectively. Although SMS is widely used for a variety of applications, it is not suitable for the purpose of remote control because it suffers from transmission delay, loss and lacks of confidentiality. This paper proposes a SMS-based protocol, which is designed with the mechanisms of reliable transmission and information encryption, thus it is capable of the implementation of secure and reliable control.
文摘Protecting private data in smart homes,a popular Internet-of-Things(IoT)application,remains a significant data security and privacy challenge due to the large-scale development and distributed nature of IoT networks.Recently,smart healthcare has leveraged smart home systems,thereby compounding security concerns in terms of the confidentiality of sensitive and private data and by extension the privacy of the data owner.However,proof-of-authority(PoA)-based blockchain distributed ledger technology(DLT)has emerged as a promising solution for protecting private data from indiscriminate use and thereby preserving the privacy of individuals residing in IoT-enabled smart homes.This review elicits some concerns,issues,and problems that have hindered the adoption of blockchain and IoT(BCoT)in some domains and suggests requisite solutions using the aging-in-place scenario.Implementation issues with BCoT were examined as well as the combined challenges BCoT can pose when utilised for security gains.The study discusses recent findings,opportunities,and barriers,and provides recommendations that could facilitate the continuous growth of blockchain applications in healthcare.Lastly,the study explored the potential of using a PoA-based permission blockchain with an applicable consent-based privacy model for decision-making in the information disclosure process,including the use of publisher-subscriber contracts for fine-grained access control to ensure secure data processing and sharing,as well as ethical trust in personal information disclosure,as a solution direction.The proposed authorisation framework could guarantee data ownership,conditional access management,scalable and tamper-proof data storage,and a more resilient system against threat models such as interception and insider attacks.
文摘As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.