期刊文献+
共找到122,678篇文章
< 1 2 250 >
每页显示 20 50 100
Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images
1
作者 Prasanalakshmi Balaji Omar Alqahtani +2 位作者 Sangita Babu Mousmi Ajay Chaurasia Shanmugapriya Prakasam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期443-458,共16页
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh... Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection. 展开更多
关键词 Bidirectional long short-term memory breast cancer detection feature extraction histopathology biopsy images multi-scale dilated vision transformer
下载PDF
An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction
2
作者 Duy Quang Tran Huy Q.Tran Minh Van Nguyen 《Computers, Materials & Continua》 SCIE EI 2024年第3期3585-3602,共18页
With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning ... With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning. 展开更多
关键词 Ensemble empirical mode decomposition traffic volume prediction long short-term memory optimal hyperparameters deep learning
下载PDF
Slope stability prediction based on a long short-term memory neural network:comparisons with convolutional neural networks,support vector machines and random forest models 被引量:5
3
作者 Faming Huang Haowen Xiong +4 位作者 Shixuan Chen Zhitao Lv Jinsong Huang Zhilu Chang Filippo Catani 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期83-96,共14页
The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning mode... The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning models have some problems,such as poor nonlinear performance,local optimum and incomplete factors feature extraction.These issues can affect the accuracy of slope stability prediction.Therefore,a deep learning algorithm called Long short-term memory(LSTM)has been innovatively proposed to predict slope stability.Taking the Ganzhou City in China as the study area,the landslide inventory and their characteristics of geotechnical parameters,slope height and slope angle are analyzed.Based on these characteristics,typical soil slopes are constructed using the Geo-Studio software.Five control factors affecting slope stability,including slope height,slope angle,internal friction angle,cohesion and volumetric weight,are selected to form different slope and construct model input variables.Then,the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors.Each slope stability coefficient and its corresponding control factors is a slope sample.As a result,a total of 2160 training samples and 450 testing samples are constructed.These sample sets are imported into LSTM for modelling and compared with the support vector machine(SVM),random forest(RF)and convo-lutional neural network(CNN).The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features.Furthermore,LSTM has a better prediction performance for slope stability compared to SVM,RF and CNN models. 展开更多
关键词 Slope stability prediction long short-term memory Deep learning Geo-Studio software Machine learning model
下载PDF
Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis 被引量:4
4
作者 Shanwei Xiong Li Zhou +1 位作者 Yiyang Dai Xu Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期1-14,共14页
A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively ... A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively used and still have considerable potential. In recent years, methods based on deep neural networks have made significant breakthroughs, and fault diagnosis methods for industrial processes based on deep learning have attracted considerable research attention. Therefore, we propose a fusion deeplearning algorithm based on a fully convolutional neural network(FCN) to extract features and build models to correctly diagnose all types of faults. We use long short-term memory(LSTM) units to expand our proposed FCN so that our proposed deep learning model can better extract the time-domain features of chemical process data. We also introduce the attention mechanism into the model, aimed at highlighting the importance of features, which is significant for the fault diagnosis of chemical processes with many features. When applied to the benchmark Tennessee Eastman process, our proposed model exhibits impressive performance, demonstrating the effectiveness of the attention-based LSTM FCN in chemical process fault diagnosis. 展开更多
关键词 Safety Fault diagnosis Process systems long short-term memory Attention mechanism Neural networks
下载PDF
Landslide displacement prediction based on optimized empirical mode decomposition and deep bidirectional long short-term memory network 被引量:2
5
作者 ZHANG Ming-yue HAN Yang +1 位作者 YANG Ping WANG Cong-ling 《Journal of Mountain Science》 SCIE CSCD 2023年第3期637-656,共20页
There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement an... There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering. 展开更多
关键词 Landslide displacement Empirical mode decomposition Soft screening stop criteria Deep bidirectional long short-term memory neural network Xintan landslide Bazimen landslide
下载PDF
AN INFORMATIC APPROACH TO A LONG MEMORY STATIONARY PROCESS
6
作者 丁义明 吴量 向绪言 《Acta Mathematica Scientia》 SCIE CSCD 2023年第6期2629-2648,共20页
Long memory is an important phenomenon that arises sometimes in the analysis of time series or spatial data.Most of the definitions concerning the long memory of a stationary process are based on the second-order prop... Long memory is an important phenomenon that arises sometimes in the analysis of time series or spatial data.Most of the definitions concerning the long memory of a stationary process are based on the second-order properties of the process.The mutual information between the past and future I_(p−f) of a stationary process represents the information stored in the history of the process which can be used to predict the future.We suggest that a stationary process can be referred to as long memory if its I_(p−f) is infinite.For a stationary process with finite block entropy,I_(p−f) is equal to the excess entropy,which is the summation of redundancies that relate the convergence rate of the conditional(differential)entropy to the entropy rate.Since the definitions of the I_(p−f) and the excess entropy of a stationary process require a very weak moment condition on the distribution of the process,it can be applied to processes whose distributions are without a bounded second moment.A significant property of I_(p−f) is that it is invariant under one-to-one transformation;this enables us to know the I_(p−f) of a stationary process from other processes.For a stationary Gaussian process,the long memory in the sense of mutual information is more strict than that in the sense of covariance.We demonstrate that the I_(p−f) of fractional Gaussian noise is infinite if and only if the Hurst parameter is H∈(1/2,1). 展开更多
关键词 mutual information between past and future long memory stationary process excess entropy fractional Gaussian noise
下载PDF
Predicting and Curing Depression Using Long Short Term Memory and Global Vector
7
作者 Ayan Kumar Abdul Quadir Md +1 位作者 J.Christy Jackson Celestine Iwendi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5837-5852,共16页
In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingne... In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingnegative effects. Unfortunately, many people suffering from these conditions,especially depression and hypertension, are unaware of their existence until theconditions become chronic. Thus, this paper proposes a novel approach usingBi-directional Long Short-Term Memory (Bi-LSTM) algorithm and GlobalVector (GloVe) algorithm for the prediction and treatment of these conditions.Smartwatches and fitness bands can be equipped with these algorithms whichcan share data with a variety of IoT devices and smart systems to betterunderstand and analyze the user’s condition. We compared the accuracy andloss of the training dataset and the validation dataset of the two modelsnamely, Bi-LSTM without a global vector layer and with a global vector layer.It was observed that the model of Bi-LSTM without a global vector layer hadan accuracy of 83%,while Bi-LSTMwith a global vector layer had an accuracyof 86% with a precision of 86.4%, and an F1 score of 0.861. In addition toproviding basic therapies for the treatment of identified cases, our model alsohelps prevent the deterioration of associated conditions, making our methoda real-world solution. 展开更多
关键词 Emotion dynamics DEPRESSION heart rate internet of things global vector long short term memory machine learning sentiment analysis
下载PDF
Device Anomaly Detection Algorithm Based on Enhanced Long Short-Term Memory Network
8
作者 罗辛 陈静 +1 位作者 袁德鑫 杨涛 《Journal of Donghua University(English Edition)》 CAS 2023年第5期548-559,共12页
The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-... The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-term memory(LSTM)is proposed.The algorithm first reduces the dimensionality of the device sensor data by principal component analysis(PCA),extracts the strongly correlated variable data among the multidimensional sensor data with the lowest possible information loss,and then uses the enhanced stacked LSTM to predict the extracted temporal data,thus improving the accuracy of anomaly detection.To improve the efficiency of the anomaly detection,a genetic algorithm(GA)is used to adjust the magnitude of the enhancements made by the LSTM model.The validation of the actual data from the pumps shows that the algorithm has significantly improved the recall rate and the detection speed of device anomaly detection,with the recall rate of 97.07%,which indicates that the algorithm is effective and efficient for device anomaly detection in the actual production environment. 展开更多
关键词 anomaly detection production equipment genetic algorithm(GA) long short-term memory(LSTM) principal component analysis(PCA)
下载PDF
敦煌古藏文文献P.T.1288中zhugs-long-dmar-po的解读及相关问题探讨
9
作者 多杰东智 《民族语文》 北大核心 2024年第4期89-103,共15页
本文从历史语言学视角,以古藏文文献为基础,结合藏语安多方言,分析敦煌古藏文文献P.T.1288中zhugs-long-dmar-po的语音、结构、含义及相关问题。文章指出P.T.1288中zhugs-long-dmar-po的含义不是“红册”“红房子(红楼)”“军团制”“... 本文从历史语言学视角,以古藏文文献为基础,结合藏语安多方言,分析敦煌古藏文文献P.T.1288中zhugs-long-dmar-po的语音、结构、含义及相关问题。文章指出P.T.1288中zhugs-long-dmar-po的含义不是“红册”“红房子(红楼)”“军团制”“红色书籍”等,其真实含义应该是当时传递军事信息的“烽火台”。 展开更多
关键词 历史语言学 敦煌古藏文文献 zhugs-long-dmar-po 藏语安多方言
原文传递
Construction and validation of somatic mutation-derived long noncoding RNAs signatures of genomic instability to predict prognosis of hepatocellular carcinoma 被引量:3
10
作者 Bo-Tao Duan Xue-Kai Zhao +4 位作者 Yang-Yang Cui De-Zheng Liu Lin Wang Lei Zhou Xing-Yuan Zhang 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第3期842-859,共18页
BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify geno... BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify genomic instability(GI).Nevertheless,GI-LncRNAs remain largely unexplored.This study established a GI-derived LncRNA signature(GILncSig)that can predict the prognosis of HCC patients.AIM To establish a GILncSig that can predict the prognosis of HCC patients.METHODS Identification of GI-LncRNAs was conducted by combining LncRNA expression and somatic mutation profiles.The GI-LncRNAs were then analyzed for functional enrichment.The GILncSig was established in the training set by Cox regression analysis,and its predictive ability was verified in the testing set and TCGA set.In addition,we explored the effects of the GILncSig and TP53 on prognosis.RESULTS A total of 88 GI-LncRNAs were found,and functional enrichment analysis showed that their functions were mainly involved in small molecule metabolism and GI.The GILncSig was constructed by 5 LncRNAs(miR210HG,AC016735.1,AC116351.1,AC010643.1,LUCAT1).In the training set,the prognosis of high-risk patients was significantly worse than that of low-risk patients,and similar results were verified in the testing set and TCGA set.Multivariate Cox regression analysis and stratified analysis confirmed that the GILncSig could be used as an independent prognostic factor.Receiver operating characteristic curve analysis of the GILncSig showed that the area under the curve(0.773)was higher than the two LncRNA signatures published recently.Furthermore,the GILncSig may have a better predictive performance than TP53 mutation status alone.CONCLUSION We established a GILncSig that can predict the prognosis of HCC patients,which will help to guide prognostic evaluation and treatment decisions. 展开更多
关键词 Genomic instability long noncoding RNA Hepatocellular carcinoma PROGNOSIS Diagnosis
下载PDF
Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature 被引量:2
11
作者 Mengwei Wu Wei Yong +2 位作者 Cunqin Fu Chunmei Ma Ruiping Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期773-785,共13页
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac... The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys. 展开更多
关键词 machine learning support vector regression shape memory alloys martensitic transformation temperature
下载PDF
Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing 被引量:1
12
作者 Wen Zhou Xueyang Shen +2 位作者 Xiaolong Yang Jiangjing Wang Wei Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期2-27,共26页
In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.I... In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms. 展开更多
关键词 nanofabrication silicon photonics phase-change materials non-volatile photonic memory neuromorphic photonic computing
下载PDF
Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism 被引量:5
13
作者 Jie Li Wen Jiang +9 位作者 Yuefang Cai Zhenqiu Ning Yingying Zhou Chengyi Wang Sookja Ki Chung Yan Huang Jingbo Sun Minzhen Deng Lihua Zhou Xiao Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期650-656,共7页
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However... Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction. 展开更多
关键词 astrocytic endothelin-1 dentate gyrus differentially expressed proteins HIPPOCAMPUS ischemic stroke learning and memory deficits lipid metabolism neural stem cells NEUROGENESIS proliferation
下载PDF
On the long-term memory characteristic in land surface air temperatures:How well do CMIP6 models perform?
14
作者 Linzhi Li Fenghua Xie Naiming Yuan 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第1期41-46,共6页
利用去趋势涨落分析(DFA)方法计算序列的长程记忆性(LTM),以CRUTEM5数据集的结果作为观测参照,评估了60个参与第六次国际耦合模式比较计划(CMIP6)的气候模式对地表气温LTM的再现能力.结果表明:大部分模式可以再现全球平均地表气温序列的... 利用去趋势涨落分析(DFA)方法计算序列的长程记忆性(LTM),以CRUTEM5数据集的结果作为观测参照,评估了60个参与第六次国际耦合模式比较计划(CMIP6)的气候模式对地表气温LTM的再现能力.结果表明:大部分模式可以再现全球平均地表气温序列的LTM特征,其中AWI-ESM-1-1-LR和E3SM-1-0的模拟效果最好;60个模式均能模拟LTM随纬度带的变化;综合来说,全球水平上CNRM-CM6-1和HadGEM3-GC31-LL对地表气温LTM的模拟性能最好;多模式平均相比单一模式模拟性能更好;多模式平均与观测结果的偏差以及模式之间的模拟差异显著体现在赤道和沿海区域,这种偏差可能源于模式对海气耦合过程的模拟差异. 展开更多
关键词 长程记忆性 去趋势涨落分析 CMIP6 模式评估 地表气温
下载PDF
Promotion of structural plasticity in area V2 of visual cortex prevents against object recognition memory deficits in aging and Alzheimer's disease rodents
15
作者 Irene Navarro-Lobato Mariam Masmudi-Martín +8 位作者 Manuel F.López-Aranda Juan F.López-Téllez Gloria Delgado Pablo Granados-Durán Celia Gaona-Romero Marta Carretero-Rey Sinforiano Posadas María E.Quiros-Ortega Zafar U.Khan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1835-1841,共7页
Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to ... Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to produce satisfa ctory effects.Therefore,in the search for a solution,we found that a treatment with the gene corresponding to the RGS14414protein in visual area V2,a brain area connected with brain circuits of the ventral stream and the medial temporal lobe,which is crucial for object recognition memory(ORM),can induce enhancement of ORM.In this study,we demonstrated that the same treatment with RGS14414in visual area V2,which is relatively unaffected in neurodegenerative diseases such as Alzheimer s disease,produced longlasting enhancement of ORM in young animals and prevent ORM deficits in rodent models of aging and Alzheimer’s disease.Furthermore,we found that the prevention of memory deficits was mediated through the upregulation of neuronal arbo rization and spine density,as well as an increase in brain-derived neurotrophic factor(BDNF).A knockdown of BDNF gene in RGS14414-treated aging rats and Alzheimer s disease model mice caused complete loss in the upregulation of neuronal structural plasticity and in the prevention of ORM deficits.These findings suggest that BDNF-mediated neuronal structural plasticity in area V2 is crucial in the prevention of memory deficits in RGS14414-treated rodent models of aging and Alzheimer’s disease.Therefore,our findings of RGS14414gene-mediated activation of neuronal circuits in visual area V2 have therapeutic relevance in the treatment of memory deficits. 展开更多
关键词 behavioral performance brain-derived neurotrophic factor cognitive dysfunction episodic memory memory circuit activation memory deficits memory enhancement object recognition memory prevention of memory loss regulator of G protein signaling
下载PDF
Between the City and Images:An Analysis of Mainstream Media’s Paths of Constructing the Cultural Memory of a City:Taking Chengdu Radio and Television’s“Hi Chengdu”as an Example 被引量:1
16
作者 Ding Ran Shi Lei 《Contemporary Social Sciences》 2024年第2期97-111,共15页
Mainstream media play a crucial role in constructing the cultural memory of a city.This study used 319 short videos released by“Hi Chengdu,”a new media product of Chengdu Radio and Television,as samples.Based on the... Mainstream media play a crucial role in constructing the cultural memory of a city.This study used 319 short videos released by“Hi Chengdu,”a new media product of Chengdu Radio and Television,as samples.Based on the grounded theory,a research framework encompassing“content,technology,and discourse”was established to explore the paths through which mainstream media construct the cultural memory.Regarding content,this paper emphasized temporal and spatial contexts and urban spaces,delving deep into the themes of the cultural memory and vehicles for it.In terms of technology,this paper discussed the practice of leveraging audio/visual-mode discourse to stitch together the impressions of a city and evoke emotional resonance to create a“flow”of memory.As for discourse,this paper looked at the performance of a communication ritual to frame concepts and shape urban identity.It is essential to break free from conventional thinking and leverage local culture as the primary driving force to further boost a city’s productivity,in order to excel in cultural communication. 展开更多
关键词 the cultural memory of a city short videos the grounded theory Chengdu Radio and Television “Hi Chengdu”
下载PDF
The Effect of the Menstrual Cycle on Cognitive Performance: Spatial Reasoning, Visual & Numerical Memory
17
作者 Anusha Asim Rifah Maryam +4 位作者 Zahra Sultan Areej Shahid Fatima Yousaf Ishika Khandelwal Isra Allana 《Journal of Behavioral and Brain Science》 2024年第10期276-296,共21页
The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these be... The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these beliefs and suggested potential positive effects of the menstrual cycle on cognitive performance. Despite these emerging findings, there is still a lack of consensus regarding the impact of the menstrual cycle on cognition, particularly in domains such as spatial reasoning, visual memory, and numerical memory. Hence, this study aimed to explore the relationship between the menstrual cycle and cognitive performance in these specific domains. Previous studies have reported mixed findings, with some suggesting no significant association and others indicating potential differences across the menstrual cycle. To contribute to this body of knowledge, we explored the research question of whether the menstrual cycles have a significant effect on cognition, particularly in the domains of spatial reasoning, visual and numerical memory in a regionally diverse sample of menstruating females. A total of 30 menstruating females from mixed geographical backgrounds participated in the study, and a repeated measures design was used to assess their cognitive performance in two phases of the menstrual cycle: follicular and luteal. The results of the study revealed that while spatial reasoning was not significantly related to the menstrual cycle (p = 0.256), both visual and numerical memory had significant positive associations (p < 0.001) with the luteal phase. However, since the effect sizes were very small, the importance of this relationship might be commonly overestimated. Future studies could thus entail designs with larger sample sizes, including neuro-biological measures of menstrual stages, and consequently inform competent interventions and support systems. 展开更多
关键词 Menstrual Health Menstrual Cycle MENSTRUATION Mental Health COGNITION Spatial Reasoning Visual memory Numerical memory
下载PDF
Prevalence and risk factors associated with long COVID symptoms in children and adolescents in a southern province of Vietnam
18
作者 Huynh Ngoc Linh Nguyen The Tan +5 位作者 Le Thi Minh Thu Nguyen Tu Loan Nguyen Thi To Uyen Le Thanh Thao Trang Truong Thanh Nam Doan Hoang Phu 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2024年第3期119-128,I0001,I0002,共12页
Objective:To investigate the prevalence and risk factors associated with long COVID symptoms among children and adolescents who have recovered from COVID-19.Methods:This study applied a cross-sectional approach within... Objective:To investigate the prevalence and risk factors associated with long COVID symptoms among children and adolescents who have recovered from COVID-19.Methods:This study applied a cross-sectional approach within community settings in a southern province of Vietnam.A structured questionnaire featuring socio-demographic information and common long COVID symptoms was employed.Phi correlation coefficients assessed associations among pairs of long COVID symptoms.Additionally,multivariable logistic regression models were performed to investigate the risk factors of long COVID in recovered COVID-19 children and adolescents.Results:Among 422 participants,39.3%reported long COVID symptoms,with a prevalence of 45.2%(SD=0.5)in children and 22.2%(SD=0.4)in adolescents.Common symptoms reported were cough 34.6%(SD=0.5),fatigue 20.6%(SD=0.4),shortness of breath 10.9%(SD=0.3),and lack of appetite 6.6%(SD=0.3).Concerning risk factors of long COVID,a higher risk was observed among demographic groups,including girls(OR 1.25,95%CI 1.15-1.37;P<0.001,reference:boys),children compared to adolescents(OR 1.24,95%CI 1.12-1.37;P<0.001),overweight individuals(OR 1.14,95%CI 1.02-1.27;P=0.018,reference:healthy weight),and participants without any COVID-19 vaccination(OR 1.36,95%CI 1.20-1.54;P<0.001),or have received only one single dose(OR 1.35,95%CI 1.10-1.64;P=0.004)compared to those who have received two doses.Besides,patients with a COVID-19 treatment duration exceeding two weeks also had a higher risk of long COVID(OR 1.32,95%CI 1.09-1.60;P=0.003)than those who recovered less than seven days.Conclusions:The insights from this study provide crucial guidance for predicting the factors associated with the occurrence of long COVID in pediatric patients,contributing to strategic interventions aimed at mitigating the long COVID risks among children and adolescents in Vietnam. 展开更多
关键词 long COVID PREVALENCE Risk factors Children ADOLESCENT VIETNAM
下载PDF
The Impact of Opioid Drugs on Memory and Other Cognitive Functions: A Review
19
作者 Mason T. Bennett Yuliya Modna Dev Kumar Shah 《Journal of Biosciences and Medicines》 2024年第4期264-287,共24页
Background and Purpose: Opioids, used for centuries to alleviate pain, have become a double-edged sword. While effective, they come with a host of adverse effects, including memory and cognition impairment. This revie... Background and Purpose: Opioids, used for centuries to alleviate pain, have become a double-edged sword. While effective, they come with a host of adverse effects, including memory and cognition impairment. This review delves into the impact of opioid drugs on cognitive functions, explores underlying mechanisms, and investigates their prevalence in both medical care and illicit drug use. The ultimate goal is to find ways to mitigate their potential harm and address the ongoing opioid crisis. Methods: We sourced data from PubMed and Google Scholar, employing search combinations like “opioids,” “memory,” “cognition,” “amnesia,” “cognitive function,” “executive function,” and “inhibition.” Our focus was on English-language articles spanning from the inception of these databases up to the present. Results: The literature consistently reveals that opioid use, particularly at high doses, adversely affects memory and other cognitive functions. Longer deliberation times, impaired decision-making, impulsivity, and behavioral disorders are common consequences. Chronic high-dose opioid use is associated with conditions such as amnesiac syndrome (OAS), post-operative cognitive dysfunction (POCD), neonatal abstinence syndrome (NAS), depression, anxiety, sedation, and addiction. Alarming trends show increased opioid use over recent decades, amplifying the risk of these outcomes. Conclusion: Opioids cast a shadow over memory and cognitive function. These effects range from amnesiac effects, lessened cognitive function, depression, and more. Contributing factors include over-prescription, misuse, misinformation, and prohibition policies. Focusing on correct informational campaigns, removing punitive policies, and focusing on harm reduction strategies have been shown to lessen the abuse and use of opioids and thus helping to mitigate the adverse effects of these drugs. Further research into the impacts of opioids on cognitive abilities is also needed as they are well demonstrated in the literature, but the mechanism is not often completely understood. 展开更多
关键词 OPIOIDS memory COGNITION PAIN
下载PDF
Long wavelength infrared metalens fabricated by photolithography
20
作者 LI Yun-Peng LUO Jia-Cheng +5 位作者 JI Ruo-Nan XIE Mao-Bin CUI Wen-Nan WANG Shao-Wei LIU Feng LU Wei 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第5期603-608,共6页
Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experiment... Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experimentally demonstrated a 4 mm size,all-silicon metasurface metalens with large depth of focus opera-tional across a broadband range from 9µm to 11.5µm.The experimental results confirm effective focusing and imaging capabilities of the metalens in LWIR region,thus paving the way for practical LWIR applications of met-alens technology. 展开更多
关键词 long wave infrared broadband operation passive imaging
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部