期刊文献+
共找到5,709篇文章
< 1 2 250 >
每页显示 20 50 100
Tool Health Condition Recognition Method for High Speed Milling of Titanium Alloy Based on Principal Component Analysis (PCA) and Long Short Term Memory (LSTM) 被引量:2
1
作者 YANG Qirui XU Kaizhou +2 位作者 ZHENG Xiaohu XIAO Lei BAO Jinsong 《Journal of Donghua University(English Edition)》 EI CAS 2019年第4期364-368,共5页
The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cut... The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cutter at the right time.In order to recognize the health condition of the milling cutter,a method based on the long short term memory(LSTM)was proposed to recognize tool health state in this paper.The various signals collected in the tool wear experiments were analyzed by time-domain statistics,and then the extracted data were generated by principal component analysis(PCA)method.The preprocessed data extracted by PCA is transmitted to the LSTM model for recognition.Compared with back propagation neural network(BPNN)and support vector machine(SVM),the proposed method can effectively utilize the time-domain regulation in the data to achieve higher recognition speed and accuracy. 展开更多
关键词 HEALTH CONDITION recognition MILLING TOOL principal component analysis(PCA) long short term memory(lstm)
下载PDF
Conditional Random Field Tracking Model Based on a Visual Long Short Term Memory Network 被引量:3
2
作者 Pei-Xin Liu Zhao-Sheng Zhu +1 位作者 Xiao-Feng Ye Xiao-Feng Li 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期308-319,共12页
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es... In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation. 展开更多
关键词 Conditional random field(CRF) long short term memory network(lstm) motion estimation multiple object tracking(MOT)
下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
3
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus long short-term memory recurrentneural network
下载PDF
Estimation of unloading relaxation depth of Baihetan Arch Dam foundation using long-short term memory network 被引量:1
4
作者 Ming-jie He Hao Li +3 位作者 Jian-rong Xu Huan-ling Wang Wei-ya Xu Shi-zhuang Chen 《Water Science and Engineering》 EI CAS CSCD 2021年第2期149-158,共10页
The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-shor... The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-short term memory(LSTM)network was used to estimate the depth of unloading relaxation zones on the left bank foundation of the Baihetan Arch Dam.Principal component analysis indicates that rock charac-teristics,the structural plane,the protection layer,lithology,and time are the main factors.The LSTM network results demonstrate the unloading relaxation characteristics of the left bank,and the relationships with the factors were also analyzed.The structural plane has the most significant influence on the distribution of unloading relaxation zones.Compared with massive basalt,the columnar jointed basalt experiences a more significant unloading relaxation phenomenon with a clear time effect,with the average unloading relaxation period being 50 d.The protection layer can effectively reduce the unloading relaxation depth by approximately 20%. 展开更多
关键词 Columnar jointed basalt Unloading relaxation long-short term memory(lstm)network Principal component analysis Stability assessment Baihetan Arch Dam
下载PDF
一种基于long short-term memory的唇语识别方法 被引量:4
5
作者 马宁 田国栋 周曦 《中国科学院大学学报(中英文)》 CSCD 北大核心 2018年第1期109-117,共9页
唇动视觉信息是说话内容的重要载体。受嘴唇外观、背景信息和说话习惯等影响,即使说话者说相同的内容,唇动视觉信息也会相差很大。为解决唇语视觉信息多样性的问题,提出一种基于long short-term memory(LSTM)的新的唇语识别方法。以往... 唇动视觉信息是说话内容的重要载体。受嘴唇外观、背景信息和说话习惯等影响,即使说话者说相同的内容,唇动视觉信息也会相差很大。为解决唇语视觉信息多样性的问题,提出一种基于long short-term memory(LSTM)的新的唇语识别方法。以往大多数的方法从嘴唇外表信息入手。本方法用嘴唇关键点坐标描述嘴唇形变信息作为唇语视频的特征,它具有类内一致性和类间区分性的特点。然后利用LSTM对特征进行时序编码,它能学习具有区分性和泛化性的空间-时序特征。在公开的唇语数据集GRID、MIRACL-VC和Oulu VS上对本方法做了针对分割的单词或短语的说话者独立的唇语识别评估。在GRID和MIRACL-VC上,本方法的准确率比传统方法至少高30%;在Oulu VS上,本方法的准确率接近于最优结果。以上实验结果表明,本文提出的基于LSTM的唇语识别方法有效地解决了唇语视觉信息多样性的问题。 展开更多
关键词 唇语识别 long short-term memory 计算机视觉
下载PDF
Binaural Speech Separation Algorithm Based on Long and Short Time Memory Networks 被引量:1
6
作者 Lin Zhou Siyuan Lu +3 位作者 Qiuyue Zhong Ying Chen Yibin Tang Yan Zhou 《Computers, Materials & Continua》 SCIE EI 2020年第6期1373-1386,共14页
Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial featur... Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial features among the consecutive speech frames become highly correlated such that it is helpful for speaker separation by providing additional spatial information.To fully exploit this information,we design a separation system on Recurrent Neural Network(RNN)with long short-term memory(LSTM)which effectively learns the temporal dynamics of spatial features.In detail,a LSTM-based speaker separation algorithm is proposed to extract the spatial features in each time-frequency(TF)unit and form the corresponding feature vector.Then,we treat speaker separation as a supervised learning problem,where a modified ideal ratio mask(IRM)is defined as the training function during LSTM learning.Simulations show that the proposed system achieves attractive separation performance in noisy and reverberant environments.Specifically,during the untrained acoustic test with limited priors,e.g.,unmatched signal to noise ratio(SNR)and reverberation,the proposed LSTM based algorithm can still outperforms the existing DNN based method in the measures of PESQ and STOI.It indicates our method is more robust in untrained conditions. 展开更多
关键词 Binaural speech separation long and short time memory networks feature vectors ideal ratio mask
下载PDF
Short-Term Relay Quality Prediction Algorithm Based on Long and Short-Term Memory 被引量:3
7
作者 XUE Wendong CHAI Yuan +2 位作者 LI Qigan HONG Yongqiang ZHENG Gaofeng 《Instrumentation》 2018年第4期46-54,共9页
The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process par... The fraction defective of semi-finished products is predicted to optimize the process of relay production lines, by which production quality and productivity are increased, and the costs are decreased. The process parameters of relay production lines are studied based on the long-and-short-term memory network. Then, the Keras deep learning framework is utilized to build up a short-term relay quality prediction algorithm for the semi-finished product. A simulation model is used to study prediction algorithm. The simulation results show that the average prediction absolute error of the fraction is less than 5%. This work displays great application potential in the relay production lines. 展开更多
关键词 RELAY Production LINE long and short-term memory network Keras DEEP Learning Framework Quality Prediction
下载PDF
Predicting and Curing Depression Using Long Short Term Memory and Global Vector
8
作者 Ayan Kumar Abdul Quadir Md +1 位作者 J.Christy Jackson Celestine Iwendi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5837-5852,共16页
In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingne... In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingnegative effects. Unfortunately, many people suffering from these conditions,especially depression and hypertension, are unaware of their existence until theconditions become chronic. Thus, this paper proposes a novel approach usingBi-directional Long Short-Term Memory (Bi-LSTM) algorithm and GlobalVector (GloVe) algorithm for the prediction and treatment of these conditions.Smartwatches and fitness bands can be equipped with these algorithms whichcan share data with a variety of IoT devices and smart systems to betterunderstand and analyze the user’s condition. We compared the accuracy andloss of the training dataset and the validation dataset of the two modelsnamely, Bi-LSTM without a global vector layer and with a global vector layer.It was observed that the model of Bi-LSTM without a global vector layer hadan accuracy of 83%,while Bi-LSTMwith a global vector layer had an accuracyof 86% with a precision of 86.4%, and an F1 score of 0.861. In addition toproviding basic therapies for the treatment of identified cases, our model alsohelps prevent the deterioration of associated conditions, making our methoda real-world solution. 展开更多
关键词 Emotion dynamics DEPRESSION heart rate internet of things global vector long short term memory machine learning sentiment analysis
下载PDF
State of Health Estimation of Lithium-Ion Batteries Using Support Vector Regression and Long Short-Term Memory
9
作者 Inioluwa Obisakin Chikodinaka Vanessa Ekeanyanwu 《Open Journal of Applied Sciences》 CAS 2022年第8期1366-1382,共17页
Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate e... Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model. 展开更多
关键词 Support Vector Regression (SVR) long short-term memory (lstm) network State of Health (SOH) Estimation
下载PDF
Analyses of fear memory in Arc/Arg3.1-deficient mice: intact short-term memory and impaired long-term and remote memory
10
作者 Kazuyuki Yamada Chihiro Homma +3 位作者 Kentaro Tanemura Toshio Ikeda Shigeyoshi Itohara Yoshiko Nagaoka 《World Journal of Neuroscience》 2011年第1期1-8,共8页
Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) was originally identified in patients with seizures. It is densely distributed in the hip-pocampus and amygdala in particular. Because the expression of ... Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) was originally identified in patients with seizures. It is densely distributed in the hip-pocampus and amygdala in particular. Because the expression of Arc/Arg3.1 is regulated by nerve in-puts, it is thought to be an immediate early gene. As shown both in vitro and in vivo, Arc/Arg3.1 is in-volved in synaptic consolidation and regulates some forms of learning and memory in rats and mice [1,2]. Furthermore, a recent study suggests that Arc/Arg3.1 may play a significant role in signal transmission via AMPA-type glutamate receptors [3-5]. Therefore, we conducted a detailed analysis of fear memory in Arc/Arg3.1-deficient mice. As previously reported, the knockout animals exhib-ited impaired fear memory in both contextual and cued test situations. Although Arc/Arg3.1-deficient mice showed almost the same performance as wild-type littermates 4 hr after a conditioning trial, their performance was impaired in the retention test after 24 hr or longer, either with or without reconsolidation. Immunohistochemical analyses showed an abnormal density of GluR1 in the hip-pocampus of Arc/Arg3.1-deficient mice;however, an application of AMPA potentiator did not improve memory performance in the mutant mice. Memory impairment in Arc/Arg3.1-deficient mice is so ro-bust that the mice provide a useful tool for devel-oping treatments for memory impairment. 展开更多
关键词 Activity-Regulated Cytoskeleton-Associated Protein (Arc/Arg3.1) KNOCKOUT (Ko) Mouse short- term memory long-term memory RECONSOLIDATION AMPA Receptor
下载PDF
基于ARIMA-LSTM的矿区地表沉降预测方法
11
作者 王磊 马驰骋 +1 位作者 齐俊艳 袁瑞甫 《计算机工程》 北大核心 2025年第1期98-105,共8页
煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单... 煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单独进行概率预测或考虑时序特性进行点预测,难以在考虑数据的时序特征的同时对其随机性进行定量描述。针对此问题,在对数据本身性质进行观察分析后选择差分整合移动平均自回归(ARIMA)模型进行时序特征的概率预测,结合长短时记忆(LSTM)网络模型来学习复杂的且具有长期依赖性的非线性时序特征。提出基于ARIMA-LSTM的地表沉降预测模型,利用ARIMA模型对数据的时序线性部分进行预测,并将ARIMA模型预测的残差数据辅助LSTM模型训练,在考虑时序特征的同时对数据的随机性进行描述。研究结果表明,相较于单独采用ARIMA或LSTM模型,该方法具有更高的预测精度(MSE为0.262 87,MAE为0.408 15,RMSE为0.512 71)。进一步的对比结果显示,预测结果与雷达卫星影像数据(经SBAS-INSAR处理后)趋势一致,证实了该方法的有效性。 展开更多
关键词 煤矿采空区 地表沉降预测 时序概率预测 差分整合移动平均自回归 长短时记忆网络
下载PDF
基于改进LSTM的数码雷管模组印刷质量预测
12
作者 许可 高宏宇 +1 位作者 宫华 孙文娟 《沈阳理工大学学报》 CAS 2025年第1期9-18,24,共11页
由于数码雷管模组印刷过程中生产工艺复杂、强时序性等特点,其质量的精准预测已成为提高产品质量管理水平的关键。基于此提出一种改进长短期记忆(long short-term memory,LSTM)网络的数码雷管模组印刷质量预测模型。首先根据数码雷管模... 由于数码雷管模组印刷过程中生产工艺复杂、强时序性等特点,其质量的精准预测已成为提高产品质量管理水平的关键。基于此提出一种改进长短期记忆(long short-term memory,LSTM)网络的数码雷管模组印刷质量预测模型。首先根据数码雷管模组印刷过程提炼机器运行参数、环境参数与检测参数作为印刷产品质量的原始特征,并对关键检测参数进行时序特征重构以增强特征表达能力;其次基于改进的LSTM网络建立数码雷管模组印刷特征提取框架,采用卷积神经网络提取空间特征避免LSTM挖掘高维印刷特征时隐含关系的不足,通过全局注意力机制自适应学习不同时刻印刷特征对印刷产品质量的贡献度,为LSTM提取的深层时序特征分配不同权值;最后以深层特征作为输入,通过全连接网络实现数码雷管模组印刷产品的质量预测。实验结果表明,相较于BP神经网络、门控循环单元网络、LSTM等预测方法,改进的LSTM网络有效提高了数码雷管模组印刷产品质量的预测精度。 展开更多
关键词 模组印刷 质量预测 长短期记忆网络 特征重构
下载PDF
基于BP-DCKF-LSTM的锂离子电池SOC估计
13
作者 张宇 李维嘉 吴铁洲 《电源技术》 北大核心 2025年第1期155-166,共12页
电池荷电状态(SOC)的准确估计是电池管理系统(BMS)的核心功能之一。为了提高锂电池SOC估算精度,提出了一种将反向传播神经网络(BP)、双容积卡尔曼滤波(DCKF)和长短期记忆神经网络(LSTM)相结合的SOC估计方法。针对多温度条件下传统多项... 电池荷电状态(SOC)的准确估计是电池管理系统(BMS)的核心功能之一。为了提高锂电池SOC估算精度,提出了一种将反向传播神经网络(BP)、双容积卡尔曼滤波(DCKF)和长短期记忆神经网络(LSTM)相结合的SOC估计方法。针对多温度条件下传统多项式拟合法在拟合开路电压(OCV)与SOC时效果较差的问题,提出了一种基于BP神经网络的拟合方法,通过验证表明该方法能有效提高拟合精度。针对单独使用模型法或数据驱动法估计SOC各自存在的优缺点,提出了一种将DCKF与LSTM相结合的估计方法,在提高估计精度的同时,可以减少参数调节时间和训练成本。实验验证表明,BP-DCKF-LSTM算法的均方根误差(RMSE)和平均绝对误差(MAE)分别小于0.5%和0.4%,具有较高的SOC估算精度和鲁棒性。 展开更多
关键词 荷电状态 反向传播神经网络 双容积卡尔曼滤波 长短期记忆神经网络
下载PDF
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别
14
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
下载PDF
基于二次分解、LSTM-ELM和误差修正的空气质量指数预测模型
15
作者 周建国 秦远 周路明 《安全与环境学报》 北大核心 2025年第1期322-334,共13页
精准预测空气质量指数(Air Quality Index,AQI)对于制定有效的空气污染治理策略至关重要。为了进一步提升AQI的预测精度,提出了一种新的预测模型,并结合了二次分解(Secondary Decomposition,SD)、优化算法、双尺度预测和误差修正的方法... 精准预测空气质量指数(Air Quality Index,AQI)对于制定有效的空气污染治理策略至关重要。为了进一步提升AQI的预测精度,提出了一种新的预测模型,并结合了二次分解(Secondary Decomposition,SD)、优化算法、双尺度预测和误差修正的方法。首先,采用改良的自适应白噪声完全集合经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)和样本熵(Sample Entropy,SE)对原始AQI序列进行分解并重构,获得高频、中频和低频3个频率分量。其次,利用经过北方苍鹰算法(Northern Goshawk Optimization,NGO)优化的变分模态分解(Variational Mode Decomposition,VMD)对高频分量进行二次分解,进一步降低其复杂度。再次,引入向量加权平均算法(Weighed Mean of Vectors Algorithm,INFO)对长短期记忆网络(Long Short-Term Memory,LSTM)和极限学习机(Extreme Learning Machine,ELM)的关键参数进行优化,同时利用INFO-LSTM预测高频分量分解后的子序列,进而利用INFO-ELM分别预测中、低频分量,并将所得预测结果进行线性叠加。最后,利用NGO-VMD和INFO-ELM对误差序列进行分解和预测,并对初次预测结果进行修正,得到最终的AQI预测值。研究选取北京、上海和成都3个典型城市为例进行实证分析,并对比了7个对照试验,发现基于二次分解、LSTM-ELM和误差修正的模型具有最高的预测精度。该模型可为治理空气污染提供理论和技术上的帮助。 展开更多
关键词 环境工程学 空气质量指数预测 二次分解 长短期记忆网络 极限学习机 向量加权平均算法 误差修正模型
下载PDF
Dynamic Hand Gesture Recognition Based on Short-Term Sampling Neural Networks 被引量:12
16
作者 Wenjin Zhang Jiacun Wang Fangping Lan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期110-120,共11页
Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning netwo... Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning network for hand gesture recognition.The network integrates several well-proved modules together to learn both short-term and long-term features from video inputs and meanwhile avoid intensive computation.To learn short-term features,each video input is segmented into a fixed number of frame groups.A frame is randomly selected from each group and represented as an RGB image as well as an optical flow snapshot.These two entities are fused and fed into a convolutional neural network(Conv Net)for feature extraction.The Conv Nets for all groups share parameters.To learn longterm features,outputs from all Conv Nets are fed into a long short-term memory(LSTM)network,by which a final classification result is predicted.The new model has been tested with two popular hand gesture datasets,namely the Jester dataset and Nvidia dataset.Comparing with other models,our model produced very competitive results.The robustness of the new model has also been proved with an augmented dataset with enhanced diversity of hand gestures. 展开更多
关键词 Convolutional neural network(ConvNet) hand gesture recognition long short-term memory(lstm)network short-term sampling transfer learning
下载PDF
融合BiLSTM与CNN的推特黑灰产分类模型
17
作者 朱恩德 王威 高见 《计算机工程与应用》 北大核心 2025年第1期186-195,共10页
当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memor... 当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)可以学习推文的上下文信息,却无法学习局部关键信息,卷积神经网络(convolution neural network,CNN)模型可以学习推文的局部关键信息,却无法学习推文的上下文信息。结合BiLSTM与CNN两种模型的优势,提出了BiLSTM-CNN推文分类模型,该模型将推文进行向量化后,输入BiLSTM模型学习推文的上下文信息,再在BiLSTM模型后引入CNN层,进行局部特征的提取,最后使用全连接层将经过池化的特征连接在一起,并应用softmax函数进行四分类。模型在自主构建的中文推特黑灰产推文数据集上进行实验,并使用TextCNN、TextRNN、TextRCNN三种分类模型作为对比实验,实验结果显示,所提的BiLSTM-CNN推文分类模型在对四类推文进行分类的宏准确率为98.32%,明显高于TextCNN、TextRNN和TextRCNN三种模型的准确率。 展开更多
关键词 文本分类 双向长短期记忆网络(Bilstm) 卷积神经网络(CNN) 黑灰产 推特
下载PDF
Real-time UAV path planning based on LSTM network
18
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(lstm)
下载PDF
基于改进CEEMDAN-BO-LSTM的短期电价预测
19
作者 秦昆 刘立群 +1 位作者 吴青峰 何俊强 《陕西科技大学学报》 北大核心 2025年第1期169-176,共8页
电价预测对于国家电力市场的销售价格,电力调度和市场波动管理具有重要意义,但现有方法在电价预测的准确性上不理想.为了进一步提升电价预测的准确性,提出一种基于改进完全自适应噪声集合经验模态分解(ICEEMDAN),贝叶斯优化(BO)和长短... 电价预测对于国家电力市场的销售价格,电力调度和市场波动管理具有重要意义,但现有方法在电价预测的准确性上不理想.为了进一步提升电价预测的准确性,提出一种基于改进完全自适应噪声集合经验模态分解(ICEEMDAN),贝叶斯优化(BO)和长短时记忆网络(LSTM)的短期电价预测模型.ICEEMDAN将原始数据分解为多个本征模态函数(IMF)和一个残差序列,然后将IMF分量重构为高频,中频和低频三个子序列,将子序列和残差序列分别与相关因素结合,重构为四个多维特征矩阵,输入BO-LSTM模型进行训练,最后得到预测结果.用西班牙国家电网公司Red Electric Espana运营数据进行算例分析,结果表明ICEEMDAN-BO-LSTM模型具有更高的准确度,在电价跳跃点和峰值点处预测结果表现出色,与其他方法相比预测效果更好,对能源企业和国家电力市场调控策略具有实用价值. 展开更多
关键词 电价预测 完全自适应噪声集合经验模态分解 贝叶斯优化 长短期记忆网络
下载PDF
Comparative study on the performance of ConvLSTM and ConvGRU in classification problems-taking early warning of short-duration heavy rainfall as an example
20
作者 Meng Zhou Jingya Wu +1 位作者 Mingxuan Chen Lei Han 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第4期52-57,共6页
卷积长短期记忆单元ConvLSTM和卷积门控循环单元ConvGRU是两种广泛应用的深度学习单元,通过将循环机制与卷积运算相结合,常常用于时空序列的预测.为了明确上述两种模型的收敛速度和分类能力,需要使用相同的模型架构对相同的分类问题进... 卷积长短期记忆单元ConvLSTM和卷积门控循环单元ConvGRU是两种广泛应用的深度学习单元,通过将循环机制与卷积运算相结合,常常用于时空序列的预测.为了明确上述两种模型的收敛速度和分类能力,需要使用相同的模型架构对相同的分类问题进行预测.本研究将北京短时强降水区级预警问题看作深度学习中的二分类问题,使用京津冀雷达网的组合反射率数据和北京区域内的自动气象站降雨数据进行深度学习模型的训练和评估.结果表明,ConvGRU的收敛速度比ConvLSTM快约25%.ConvLSTM和ConvGRU的预警性能随地区,时间,降雨强度的变化趋势相似,但大部分ConvLSTM的得分较高,少数情况下ConvGRU的得分较高. 展开更多
关键词 深度学习 卷积长短期记忆单元 卷积门控循环单元 分类问题
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部